Full t-matrix approach to quasiparticle interference in non-centrosymmetric superconductors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-12

AUTHORS

Alireza Akbari, Peter Thalmeier

ABSTRACT

We develop the full t-matrix theory of quasiparticle interference (QPI) for non-centrosymmetric (NCS) superconductors with Rashba spin-orbit coupling. We give a closed solution for the QPI spectrum for arbitrary combination and strength of nonmagnetic (Vc) and magnetic (Vm) impurity scattering potentials in terms of integrated normal and anomalous Green’s functions. The theory is applied to a realistic 2D model of the Ce-based 131-type heavy fermion superconductors. We discuss the QPI dependence on frequency, composition and strength of scattering and compare with Born approximation results. We show that the QPI pattern is remarkably stable against changes in the scattering model and can therefore give reliable information on the properties of Rashba-split Fermi surface sheets and in particular on the accidental nodal position of the mixed singlet-triplet gap function in NCS superconductors. More... »

PAGES

495

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2013-40859-6

DOI

http://dx.doi.org/10.1140/epjb/e2013-40859-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048162198


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Solid State Research", 
          "id": "https://www.grid.ac/institutes/grid.419552.e", 
          "name": [
            "Max Planck Institute for Chemical\nPhysics of Solids, 01187, Dresden, Germany", 
            "Max Planck Institute for Solid State\nResearch, 70569, Stuttgart, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akbari", 
        "givenName": "Alireza", 
        "id": "sg:person.07603456351.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07603456351.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for Chemical\nPhysics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thalmeier", 
        "givenName": "Peter", 
        "id": "sg:person.015501240375.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature09073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003432741", 
          "https://doi.org/10.1038/nature09073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003432741", 
          "https://doi.org/10.1038/nature09073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007359636", 
          "https://doi.org/10.1038/nature01496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007359636", 
          "https://doi.org/10.1038/nature01496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.180506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010506109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.180506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010506109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.134505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011915481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.134505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011915481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.104511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012703830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.104511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012703830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1187399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013203845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1187399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013203845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014344396", 
          "https://doi.org/10.1038/nphys2672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.144514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017208714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.144514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017208714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.3363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022690713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.3363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022690713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.020511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023097961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.020511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023097961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.014524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026295993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.014524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026295993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.257001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028104430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.257001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028104430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.035129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028738108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.035129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028738108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032044550", 
          "https://doi.org/10.1038/nphys2671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2007-00019-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036015908", 
          "https://doi.org/10.1140/epjb/e2007-00019-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.094514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036497472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.094514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036497472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.197002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037487275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.197002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037487275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/102/57008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039757109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.014508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039841360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.014508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039841360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.017006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039885847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.017006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039885847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/18/44/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042042382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1005892107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042409973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.224506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042543247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.224506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042543247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.134507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044236690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.134507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044236690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.060503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044881183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.060503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044881183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045026742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045026742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.144515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048920975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.144515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048920975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.184524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050370518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.184524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050370518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.014518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052970351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.014518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052970351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1222793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062466731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.65.3452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063116095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.76.051003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063122984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.76.051008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063122989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.76.051009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063122990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.76.051010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063122991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.77.113706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063123832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.77.124711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063123913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.78.103703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063124332"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "We develop the full t-matrix theory of quasiparticle interference (QPI) for non-centrosymmetric (NCS) superconductors with Rashba spin-orbit coupling. We give a closed solution for the QPI spectrum for arbitrary combination and strength of nonmagnetic (Vc) and magnetic (Vm) impurity scattering potentials in terms of integrated normal and anomalous Green\u2019s functions. The theory is applied to a realistic 2D model of the Ce-based 131-type heavy fermion superconductors. We discuss the QPI dependence on frequency, composition and strength of scattering and compare with Born approximation results. We show that the QPI pattern is remarkably stable against changes in the scattering model and can therefore give reliable information on the properties of Rashba-split Fermi surface sheets and in particular on the accidental nodal position of the mixed singlet-triplet gap function in NCS superconductors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2013-40859-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "name": "Full t-matrix approach to quasiparticle interference in non-centrosymmetric superconductors", 
    "pagination": "495", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e56fd932629d077d2ad17055768e30c5598dfef72ca32f65637038edaa36cdda"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2013-40859-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048162198"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2013-40859-6", 
      "https://app.dimensions.ai/details/publication/pub.1048162198"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140/epjb/e2013-40859-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2013-40859-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2013-40859-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2013-40859-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2013-40859-6'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2013-40859-6 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N4ac16b95c85f41e8a41a468d9e6617f0
4 schema:citation sg:pub.10.1038/nature01496
5 sg:pub.10.1038/nature09073
6 sg:pub.10.1038/nphys2671
7 sg:pub.10.1038/nphys2672
8 sg:pub.10.1140/epjb/e2007-00019-5
9 https://doi.org/10.1073/pnas.1005892107
10 https://doi.org/10.1088/0953-8984/18/44/r01
11 https://doi.org/10.1103/physrevb.67.020511
12 https://doi.org/10.1103/physrevb.68.014508
13 https://doi.org/10.1103/physrevb.68.180506
14 https://doi.org/10.1103/physrevb.69.060503
15 https://doi.org/10.1103/physrevb.69.094514
16 https://doi.org/10.1103/physrevb.73.104511
17 https://doi.org/10.1103/physrevb.74.184524
18 https://doi.org/10.1103/physrevb.78.014518
19 https://doi.org/10.1103/physrevb.79.144515
20 https://doi.org/10.1103/physrevb.80.144514
21 https://doi.org/10.1103/physrevb.81.014524
22 https://doi.org/10.1103/physrevb.82.224506
23 https://doi.org/10.1103/physrevb.84.134505
24 https://doi.org/10.1103/physrevb.84.134507
25 https://doi.org/10.1103/physrevb.86.035129
26 https://doi.org/10.1103/physrevlett.104.257001
27 https://doi.org/10.1103/physrevlett.71.3363
28 https://doi.org/10.1103/physrevlett.94.197002
29 https://doi.org/10.1103/physrevlett.97.017006
30 https://doi.org/10.1103/revmodphys.75.473
31 https://doi.org/10.1126/science.1166138
32 https://doi.org/10.1126/science.1187399
33 https://doi.org/10.1126/science.1218726
34 https://doi.org/10.1126/science.1222793
35 https://doi.org/10.1143/jpsj.65.3452
36 https://doi.org/10.1143/jpsj.76.051003
37 https://doi.org/10.1143/jpsj.76.051008
38 https://doi.org/10.1143/jpsj.76.051009
39 https://doi.org/10.1143/jpsj.76.051010
40 https://doi.org/10.1143/jpsj.77.113706
41 https://doi.org/10.1143/jpsj.77.124711
42 https://doi.org/10.1143/jpsj.78.103703
43 https://doi.org/10.1209/0295-5075/102/57008
44 schema:datePublished 2013-12
45 schema:datePublishedReg 2013-12-01
46 schema:description We develop the full t-matrix theory of quasiparticle interference (QPI) for non-centrosymmetric (NCS) superconductors with Rashba spin-orbit coupling. We give a closed solution for the QPI spectrum for arbitrary combination and strength of nonmagnetic (Vc) and magnetic (Vm) impurity scattering potentials in terms of integrated normal and anomalous Green’s functions. The theory is applied to a realistic 2D model of the Ce-based 131-type heavy fermion superconductors. We discuss the QPI dependence on frequency, composition and strength of scattering and compare with Born approximation results. We show that the QPI pattern is remarkably stable against changes in the scattering model and can therefore give reliable information on the properties of Rashba-split Fermi surface sheets and in particular on the accidental nodal position of the mixed singlet-triplet gap function in NCS superconductors.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N61943d6c4f364cd1b078b4844d17d0b8
51 Nec8e1638c8344d03b45d50bc988c6496
52 sg:journal.1129956
53 schema:name Full t-matrix approach to quasiparticle interference in non-centrosymmetric superconductors
54 schema:pagination 495
55 schema:productId N7f778ce7fc9a4260a16f94b59dba6ef3
56 N8caf3652c3644dbe80e36fe9e1cae9f3
57 Nbdaa67fe08984fa79e3a21aa11c29144
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048162198
59 https://doi.org/10.1140/epjb/e2013-40859-6
60 schema:sdDatePublished 2019-04-10T14:58
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N8cc15d77d10548ec9fe923b870c5c613
63 schema:url http://link.springer.com/10.1140/epjb/e2013-40859-6
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N4ac16b95c85f41e8a41a468d9e6617f0 rdf:first sg:person.07603456351.53
68 rdf:rest Ne65a185be7ee49a098a510d25076b6e5
69 N61943d6c4f364cd1b078b4844d17d0b8 schema:volumeNumber 86
70 rdf:type schema:PublicationVolume
71 N7f778ce7fc9a4260a16f94b59dba6ef3 schema:name doi
72 schema:value 10.1140/epjb/e2013-40859-6
73 rdf:type schema:PropertyValue
74 N8caf3652c3644dbe80e36fe9e1cae9f3 schema:name readcube_id
75 schema:value e56fd932629d077d2ad17055768e30c5598dfef72ca32f65637038edaa36cdda
76 rdf:type schema:PropertyValue
77 N8cc15d77d10548ec9fe923b870c5c613 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nbdaa67fe08984fa79e3a21aa11c29144 schema:name dimensions_id
80 schema:value pub.1048162198
81 rdf:type schema:PropertyValue
82 Ne65a185be7ee49a098a510d25076b6e5 rdf:first sg:person.015501240375.83
83 rdf:rest rdf:nil
84 Nec8e1638c8344d03b45d50bc988c6496 schema:issueNumber 12
85 rdf:type schema:PublicationIssue
86 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
87 schema:name Physical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
90 schema:name Other Physical Sciences
91 rdf:type schema:DefinedTerm
92 sg:journal.1129956 schema:issn 1155-4304
93 1286-4862
94 schema:name The European Physical Journal B
95 rdf:type schema:Periodical
96 sg:person.015501240375.83 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
97 schema:familyName Thalmeier
98 schema:givenName Peter
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83
100 rdf:type schema:Person
101 sg:person.07603456351.53 schema:affiliation https://www.grid.ac/institutes/grid.419552.e
102 schema:familyName Akbari
103 schema:givenName Alireza
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07603456351.53
105 rdf:type schema:Person
106 sg:pub.10.1038/nature01496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007359636
107 https://doi.org/10.1038/nature01496
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/nature09073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003432741
110 https://doi.org/10.1038/nature09073
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/nphys2671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032044550
113 https://doi.org/10.1038/nphys2671
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nphys2672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014344396
116 https://doi.org/10.1038/nphys2672
117 rdf:type schema:CreativeWork
118 sg:pub.10.1140/epjb/e2007-00019-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036015908
119 https://doi.org/10.1140/epjb/e2007-00019-5
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1073/pnas.1005892107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042409973
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/0953-8984/18/44/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042042382
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.67.020511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023097961
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevb.68.014508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039841360
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevb.68.180506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010506109
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevb.69.060503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044881183
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevb.69.094514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036497472
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevb.73.104511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012703830
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevb.74.184524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050370518
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevb.78.014518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052970351
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.79.144515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048920975
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.80.144514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017208714
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.81.014524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026295993
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.82.224506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042543247
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.84.134505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011915481
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.84.134507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044236690
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.86.035129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028738108
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.104.257001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028104430
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.71.3363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022690713
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.94.197002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037487275
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.97.017006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039885847
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/revmodphys.75.473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045026742
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1126/science.1166138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459029
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1126/science.1187399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013203845
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1126/science.1218726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465985
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1126/science.1222793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466731
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1143/jpsj.65.3452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063116095
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1143/jpsj.76.051003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063122984
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1143/jpsj.76.051008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063122989
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1143/jpsj.76.051009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063122990
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1143/jpsj.76.051010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063122991
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1143/jpsj.77.113706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063123832
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1143/jpsj.77.124711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063123913
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1143/jpsj.78.103703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063124332
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1209/0295-5075/102/57008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039757109
190 rdf:type schema:CreativeWork
191 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
192 schema:name Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.419552.e schema:alternateName Max Planck Institute for Solid State Research
195 schema:name Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
196 Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...