Fidelity, Rosen-Zener dynamics, entropy and decoherence in one dimensional hard-core bosonic systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-05-02

AUTHORS

Sthitadhi Roy, Tanay Nag, Amit Dutta

ABSTRACT

We study the non-equilibrium dynamics of a one-dimensional system of hard core bosons (HCBs) in the presence of an onsite potential (with an alternating sign between the odd and even sites) which shows a quantum phase transition (QPT) from the superfluid (SF) phase to the so-called “Mott Insulator” (MI) phase. The ground state quantum fidelity shows a sharp dip at the quantum critical point (QCP) while the fidelity susceptibility shows a divergence right there with its scaling given in terms of the correlation length exponent of the QPT. We then study the evolution of this bosonic system following a quench in which the magnitude of the alternating potential is changed starting from zero (the SF phase) to a non-zero value (the MI phase) according to a half Rosen-Zener (HRZ) scheme or brought back to the initial value following a full Rosen-Zener (FRZ) scheme. The local von Neumann entropy density is calculated in the final MI phase (following the HRZ quench) and is found to be less than the equilibrium value (log 2) due to the defects generated in the final state as a result of the quenching starting from the QCP of the system. We also briefly dwell on the FRZ quenching scheme in which the system is finally in the SF phase through the intermediate MI phase and calculate the reduction in the supercurrent and the non-zero value of the residual local entropy density in the final state. Finally, the loss of coherence of a qubit (globally and weekly coupled to the HCB system) which is initially in a pure state is investigated by calculating the time-dependence of the decoherence factor when the HCB chain evolves under a HRZ scheme starting from the SF phase. This result is compared with that of the sudden quench limit of the half Rosen-Zener scheme where an exact analytical form of the decoherence factor can be derived. More... »

PAGES

204

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2013-40052-1

DOI

http://dx.doi.org/10.1140/epjb/e2013-40052-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011576896


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India", 
          "id": "http://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roy", 
        "givenName": "Sthitadhi", 
        "id": "sg:person.011613021745.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011613021745.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India", 
          "id": "http://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nag", 
        "givenName": "Tanay", 
        "id": "sg:person.0655362774.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655362774.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India", 
          "id": "http://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dutta", 
        "givenName": "Amit", 
        "id": "sg:person.013777713203.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013777713203.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature05094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005654060", 
          "https://doi.org/10.1038/nature05094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-05328-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041991125", 
          "https://doi.org/10.1007/978-3-662-05328-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415039a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052648436", 
          "https://doi.org/10.1038/415039a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028441200", 
          "https://doi.org/10.1038/nature02530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416608a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025998679", 
          "https://doi.org/10.1038/416608a"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05-02", 
    "datePublishedReg": "2013-05-02", 
    "description": "We study the non-equilibrium dynamics of a one-dimensional system of hard core bosons\n(HCBs) in the presence of an onsite potential (with an alternating sign between the odd\nand even sites) which shows a quantum phase transition (QPT) from the superfluid (SF)\nphase to the so-called \u201cMott Insulator\u201d (MI) phase. The ground state quantum fidelity\nshows a sharp dip at the quantum critical point (QCP) while the fidelity susceptibility\nshows a divergence right there with its scaling given in terms of the correlation length\nexponent of the QPT. We then study the evolution of this bosonic system following a quench\nin which the magnitude of the alternating potential is changed starting from zero (the SF\nphase) to a non-zero value (the MI phase) according to a half Rosen-Zener (HRZ) scheme or\nbrought back to the initial value following a full Rosen-Zener (FRZ) scheme. The local von\nNeumann entropy density is calculated in the final MI phase (following the HRZ quench) and\nis found to be less than the equilibrium value (log\u20092) due to the defects generated in the\nfinal state as a result of the quenching starting from the QCP of the system. We also\nbriefly dwell on the FRZ quenching scheme in which the system is finally in the SF phase\nthrough the intermediate MI phase and calculate the reduction in the supercurrent and the\nnon-zero value of the residual local entropy density in the final state. Finally, the loss\nof coherence of a qubit (globally and weekly coupled to the HCB system) which is initially\nin a pure state is investigated by calculating the time-dependence of the decoherence\nfactor when the HCB chain evolves under a HRZ scheme starting from the SF phase. This\nresult is compared with that of the sudden quench limit of the half Rosen-Zener scheme\nwhere an exact analytical form of the decoherence factor can be derived.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjb/e2013-40052-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "keywords": [
      "quantum phase transition", 
      "quantum critical point", 
      "hard-core bosons", 
      "Mott insulator", 
      "bosonic systems", 
      "final state", 
      "SF phase", 
      "entropy density", 
      "MI phase", 
      "non-equilibrium dynamics", 
      "local entropy density", 
      "quantum fidelity", 
      "one-dimensional systems", 
      "decoherence factor", 
      "fidelity susceptibility", 
      "core bosons", 
      "non-zero values", 
      "sharp dip", 
      "quench limit", 
      "pure states", 
      "exact analytical form", 
      "onsite potential", 
      "superfluid", 
      "decoherence", 
      "phase transition", 
      "correlation length", 
      "critical point", 
      "analytical form", 
      "equilibrium value", 
      "qubits", 
      "bosons", 
      "insulator", 
      "supercurrent", 
      "density", 
      "state", 
      "dynamics", 
      "phase", 
      "coherence", 
      "fidelity", 
      "quenching", 
      "transition", 
      "dip", 
      "scheme", 
      "evolves", 
      "limit", 
      "magnitude", 
      "scaling", 
      "system", 
      "potential", 
      "evolution", 
      "values", 
      "exponent", 
      "defects", 
      "initial value", 
      "results", 
      "length", 
      "divergence", 
      "susceptibility", 
      "terms", 
      "presence", 
      "loss", 
      "point", 
      "form", 
      "von", 
      "factors", 
      "dwell", 
      "reduction", 
      "FrzS"
    ], 
    "name": "Fidelity, Rosen-Zener dynamics, entropy and decoherence in one dimensional hard-core bosonic systems", 
    "pagination": "204", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011576896"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2013-40052-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2013-40052-1", 
      "https://app.dimensions.ai/details/publication/pub.1011576896"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_584.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjb/e2013-40052-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2013-40052-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2013-40052-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2013-40052-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2013-40052-1'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      22 PREDICATES      98 URIs      85 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2013-40052-1 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N6a2daccb17b94dacb63b07f52bd54eba
4 schema:citation sg:pub.10.1007/978-3-662-05328-7
5 sg:pub.10.1038/415039a
6 sg:pub.10.1038/416608a
7 sg:pub.10.1038/nature02530
8 sg:pub.10.1038/nature05094
9 schema:datePublished 2013-05-02
10 schema:datePublishedReg 2013-05-02
11 schema:description We study the non-equilibrium dynamics of a one-dimensional system of hard core bosons (HCBs) in the presence of an onsite potential (with an alternating sign between the odd and even sites) which shows a quantum phase transition (QPT) from the superfluid (SF) phase to the so-called “Mott Insulator” (MI) phase. The ground state quantum fidelity shows a sharp dip at the quantum critical point (QCP) while the fidelity susceptibility shows a divergence right there with its scaling given in terms of the correlation length exponent of the QPT. We then study the evolution of this bosonic system following a quench in which the magnitude of the alternating potential is changed starting from zero (the SF phase) to a non-zero value (the MI phase) according to a half Rosen-Zener (HRZ) scheme or brought back to the initial value following a full Rosen-Zener (FRZ) scheme. The local von Neumann entropy density is calculated in the final MI phase (following the HRZ quench) and is found to be less than the equilibrium value (log 2) due to the defects generated in the final state as a result of the quenching starting from the QCP of the system. We also briefly dwell on the FRZ quenching scheme in which the system is finally in the SF phase through the intermediate MI phase and calculate the reduction in the supercurrent and the non-zero value of the residual local entropy density in the final state. Finally, the loss of coherence of a qubit (globally and weekly coupled to the HCB system) which is initially in a pure state is investigated by calculating the time-dependence of the decoherence factor when the HCB chain evolves under a HRZ scheme starting from the SF phase. This result is compared with that of the sudden quench limit of the half Rosen-Zener scheme where an exact analytical form of the decoherence factor can be derived.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N9dce47db76ea47fba71c2e134d616ae9
16 Nb89b6479b5a64b42a7691680d7fb374e
17 sg:journal.1129956
18 schema:keywords FrzS
19 MI phase
20 Mott insulator
21 SF phase
22 analytical form
23 bosonic systems
24 bosons
25 coherence
26 core bosons
27 correlation length
28 critical point
29 decoherence
30 decoherence factor
31 defects
32 density
33 dip
34 divergence
35 dwell
36 dynamics
37 entropy density
38 equilibrium value
39 evolution
40 evolves
41 exact analytical form
42 exponent
43 factors
44 fidelity
45 fidelity susceptibility
46 final state
47 form
48 hard-core bosons
49 initial value
50 insulator
51 length
52 limit
53 local entropy density
54 loss
55 magnitude
56 non-equilibrium dynamics
57 non-zero values
58 one-dimensional systems
59 onsite potential
60 phase
61 phase transition
62 point
63 potential
64 presence
65 pure states
66 quantum critical point
67 quantum fidelity
68 quantum phase transition
69 qubits
70 quench limit
71 quenching
72 reduction
73 results
74 scaling
75 scheme
76 sharp dip
77 state
78 supercurrent
79 superfluid
80 susceptibility
81 system
82 terms
83 transition
84 values
85 von
86 schema:name Fidelity, Rosen-Zener dynamics, entropy and decoherence in one dimensional hard-core bosonic systems
87 schema:pagination 204
88 schema:productId N8d2b2378763a4b4a993eaa0bd96280c6
89 Nd7ca1662649f4b9a8b055bac84cda525
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011576896
91 https://doi.org/10.1140/epjb/e2013-40052-1
92 schema:sdDatePublished 2022-05-20T07:28
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher Nac67e013be1644c9a87fdd307a968933
95 schema:url https://doi.org/10.1140/epjb/e2013-40052-1
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N4e502653ef624ff7878f9fc0200756a0 rdf:first sg:person.0655362774.07
100 rdf:rest Ne0933338f1794b91abbe47016137a234
101 N6a2daccb17b94dacb63b07f52bd54eba rdf:first sg:person.011613021745.97
102 rdf:rest N4e502653ef624ff7878f9fc0200756a0
103 N8d2b2378763a4b4a993eaa0bd96280c6 schema:name dimensions_id
104 schema:value pub.1011576896
105 rdf:type schema:PropertyValue
106 N9dce47db76ea47fba71c2e134d616ae9 schema:issueNumber 5
107 rdf:type schema:PublicationIssue
108 Nac67e013be1644c9a87fdd307a968933 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nb89b6479b5a64b42a7691680d7fb374e schema:volumeNumber 86
111 rdf:type schema:PublicationVolume
112 Nd7ca1662649f4b9a8b055bac84cda525 schema:name doi
113 schema:value 10.1140/epjb/e2013-40052-1
114 rdf:type schema:PropertyValue
115 Ne0933338f1794b91abbe47016137a234 rdf:first sg:person.013777713203.27
116 rdf:rest rdf:nil
117 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
118 schema:name Mathematical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
121 schema:name Physical Sciences
122 rdf:type schema:DefinedTerm
123 sg:journal.1129956 schema:issn 1155-4304
124 1286-4862
125 schema:name The European Physical Journal B
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.011613021745.97 schema:affiliation grid-institutes:grid.417965.8
129 schema:familyName Roy
130 schema:givenName Sthitadhi
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011613021745.97
132 rdf:type schema:Person
133 sg:person.013777713203.27 schema:affiliation grid-institutes:grid.417965.8
134 schema:familyName Dutta
135 schema:givenName Amit
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013777713203.27
137 rdf:type schema:Person
138 sg:person.0655362774.07 schema:affiliation grid-institutes:grid.417965.8
139 schema:familyName Nag
140 schema:givenName Tanay
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655362774.07
142 rdf:type schema:Person
143 sg:pub.10.1007/978-3-662-05328-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041991125
144 https://doi.org/10.1007/978-3-662-05328-7
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/415039a schema:sameAs https://app.dimensions.ai/details/publication/pub.1052648436
147 https://doi.org/10.1038/415039a
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/416608a schema:sameAs https://app.dimensions.ai/details/publication/pub.1025998679
150 https://doi.org/10.1038/416608a
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nature02530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028441200
153 https://doi.org/10.1038/nature02530
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nature05094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005654060
156 https://doi.org/10.1038/nature05094
157 rdf:type schema:CreativeWork
158 grid-institutes:grid.417965.8 schema:alternateName Department of Physics, Indian Institute of Technology, 208016, Kanpur, India
159 schema:name Department of Physics, Indian Institute of Technology, 208016, Kanpur, India
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...