Imitation dynamics in a game of traffic View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-04-15

AUTHORS

Gabriel Paissan, Guillermo Abramson

ABSTRACT

We study a model of traffic where drivers adopt different behavioral strategies. These can be cooperative or defective according to a driver abiding or not by a traffic rule. Drivers can change their strategy by imitating the majority, with a rule that depends on the strategies with which they have interacted. These interactions occur at intersections, where vehicles pay a temporal cost according to their strategy. We analyze the conditions under which different strategy compositions represent an advantage in the system velocity. We found that the cooperators’ mean speed is higher than the defectors’ even when the vehicle density is large. However, defectors can obtain benefits in their mean speed when they are a minority in an essentially cooperative population. The presence of a core of educated drivers, who persist firmly in a cooperative behavior, optimizes the speed in the system, especially for intermediate values of vehicular density and higher temporal costs. More... »

PAGES

153

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2013-30372-5

DOI

http://dx.doi.org/10.1140/epjb/e2013-30372-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044434602


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas, Centro At\u00f3mico Bariloche and Centro Regional Universitario Bariloche - UNCo, 8400 Bariloche, R\u00edo Negro, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.423606.5", 
          "name": [
            "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas, Centro At\u00f3mico Bariloche and Centro Regional Universitario Bariloche - UNCo, 8400 Bariloche, R\u00edo Negro, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paissan", 
        "givenName": "Gabriel", 
        "id": "sg:person.012745266571.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012745266571.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas, Centro At\u00f3mico Bariloche and Instituto Balseiro, 8400 Bariloche, R\u00edo Negro, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.423606.5", 
          "name": [
            "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas, Centro At\u00f3mico Bariloche and Instituto Balseiro, 8400 Bariloche, R\u00edo Negro, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abramson", 
        "givenName": "Guillermo", 
        "id": "sg:person.01143510413.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143510413.81"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013-04-15", 
    "datePublishedReg": "2013-04-15", 
    "description": "We study a model of traffic where drivers adopt different behavioral strategies. These can be cooperative or defective according to a driver abiding or not by a traffic rule. Drivers can change their strategy by imitating the majority, with a rule that depends on the strategies with which they have interacted. These interactions occur at intersections, where vehicles pay a temporal cost according to their strategy. We analyze the conditions under which different strategy compositions represent an advantage in the system velocity. We found that the cooperators\u2019 mean speed is higher than the defectors\u2019 even when the vehicle density is large. However, defectors can obtain benefits in their mean speed when they are a minority in an essentially cooperative population. The presence of a core of educated drivers, who persist firmly in a cooperative behavior, optimizes the speed in the system, especially for intermediate values of vehicular density and higher temporal costs.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjb/e2013-30372-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "keywords": [
      "drivers", 
      "cost", 
      "cooperative behavior", 
      "rules", 
      "imitation dynamics", 
      "game", 
      "strategies", 
      "different behavioral strategies", 
      "temporal cost", 
      "defectors", 
      "benefits", 
      "behavioral strategies", 
      "cooperators", 
      "model", 
      "dynamics", 
      "traffic rules", 
      "values", 
      "vehicle", 
      "advantages", 
      "minority", 
      "cooperative population", 
      "behavior", 
      "intermediate values", 
      "traffic", 
      "majority", 
      "speed", 
      "population", 
      "system", 
      "conditions", 
      "mean speed", 
      "vehicular density", 
      "interaction", 
      "intersection", 
      "vehicle density", 
      "presence", 
      "core", 
      "composition", 
      "model of traffic", 
      "system velocity", 
      "density", 
      "velocity", 
      "high temporal costs", 
      "different strategy compositions", 
      "strategy composition", 
      "game of traffic"
    ], 
    "name": "Imitation dynamics in a game of traffic", 
    "pagination": "153", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044434602"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2013-30372-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2013-30372-5", 
      "https://app.dimensions.ai/details/publication/pub.1044434602"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_615.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjb/e2013-30372-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2013-30372-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2013-30372-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2013-30372-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2013-30372-5'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      70 URIs      62 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2013-30372-5 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N75af817f6784419e817c1a0cb94a03b7
4 schema:datePublished 2013-04-15
5 schema:datePublishedReg 2013-04-15
6 schema:description We study a model of traffic where drivers adopt different behavioral strategies. These can be cooperative or defective according to a driver abiding or not by a traffic rule. Drivers can change their strategy by imitating the majority, with a rule that depends on the strategies with which they have interacted. These interactions occur at intersections, where vehicles pay a temporal cost according to their strategy. We analyze the conditions under which different strategy compositions represent an advantage in the system velocity. We found that the cooperators’ mean speed is higher than the defectors’ even when the vehicle density is large. However, defectors can obtain benefits in their mean speed when they are a minority in an essentially cooperative population. The presence of a core of educated drivers, who persist firmly in a cooperative behavior, optimizes the speed in the system, especially for intermediate values of vehicular density and higher temporal costs.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N70480752f1b94797bfb0358a8d6ba3bc
11 Na54fa7d8ba064a8ab048925bb9fba5d4
12 sg:journal.1129956
13 schema:keywords advantages
14 behavior
15 behavioral strategies
16 benefits
17 composition
18 conditions
19 cooperative behavior
20 cooperative population
21 cooperators
22 core
23 cost
24 defectors
25 density
26 different behavioral strategies
27 different strategy compositions
28 drivers
29 dynamics
30 game
31 game of traffic
32 high temporal costs
33 imitation dynamics
34 interaction
35 intermediate values
36 intersection
37 majority
38 mean speed
39 minority
40 model
41 model of traffic
42 population
43 presence
44 rules
45 speed
46 strategies
47 strategy composition
48 system
49 system velocity
50 temporal cost
51 traffic
52 traffic rules
53 values
54 vehicle
55 vehicle density
56 vehicular density
57 velocity
58 schema:name Imitation dynamics in a game of traffic
59 schema:pagination 153
60 schema:productId N8354fa5f7e69405aac19bfadc53e3df6
61 Nacf312cc6ffa436388a50db9809262fc
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044434602
63 https://doi.org/10.1140/epjb/e2013-30372-5
64 schema:sdDatePublished 2021-12-01T19:29
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N1aa7859c87364b5881105f975623ec6c
67 schema:url https://doi.org/10.1140/epjb/e2013-30372-5
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N1aa7859c87364b5881105f975623ec6c schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N70480752f1b94797bfb0358a8d6ba3bc schema:issueNumber 4
74 rdf:type schema:PublicationIssue
75 N75af817f6784419e817c1a0cb94a03b7 rdf:first sg:person.012745266571.76
76 rdf:rest N95cf00cabe2841949eb73f2570ba80aa
77 N8354fa5f7e69405aac19bfadc53e3df6 schema:name dimensions_id
78 schema:value pub.1044434602
79 rdf:type schema:PropertyValue
80 N95cf00cabe2841949eb73f2570ba80aa rdf:first sg:person.01143510413.81
81 rdf:rest rdf:nil
82 Na54fa7d8ba064a8ab048925bb9fba5d4 schema:volumeNumber 86
83 rdf:type schema:PublicationVolume
84 Nacf312cc6ffa436388a50db9809262fc schema:name doi
85 schema:value 10.1140/epjb/e2013-30372-5
86 rdf:type schema:PropertyValue
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
91 schema:name Physical Sciences
92 rdf:type schema:DefinedTerm
93 sg:journal.1129956 schema:issn 1155-4304
94 1286-4862
95 schema:name The European Physical Journal B
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.01143510413.81 schema:affiliation grid-institutes:grid.423606.5
99 schema:familyName Abramson
100 schema:givenName Guillermo
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143510413.81
102 rdf:type schema:Person
103 sg:person.012745266571.76 schema:affiliation grid-institutes:grid.423606.5
104 schema:familyName Paissan
105 schema:givenName Gabriel
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012745266571.76
107 rdf:type schema:Person
108 grid-institutes:grid.423606.5 schema:alternateName Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche and Centro Regional Universitario Bariloche - UNCo, 8400 Bariloche, Río Negro, Argentina
109 Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche and Instituto Balseiro, 8400 Bariloche, Río Negro, Argentina
110 schema:name Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche and Centro Regional Universitario Bariloche - UNCo, 8400 Bariloche, Río Negro, Argentina
111 Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche and Instituto Balseiro, 8400 Bariloche, Río Negro, Argentina
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...