Spin excitons in the unconventional superconducting and hidden order state of strongly correlated electrons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-03

AUTHORS

Peter Thalmeier, Alireza Akbari

ABSTRACT

The formation of collective spin excitons below the single particle continuum is observed in numerous unconventional superconductors. CeCoIn5 is the most well established case for heavy fermion compounds. It is also the first example where the splitting of magnetic excitons by a magnetic field is observed for fields within the tetragonal plane. Contrary to expectations it is revealed as a doublet excitation. We explain the splitting as the result of a strongly anisotropic spin response described within the context of an Anderson lattice type model. Recently it was shown that collective spin excitations also appear within the hidden order phase of non- superconducting CeB6. It is a signature of the itinerant nature of spin response as opposed to the commonly used localized 4f approach in this compound. We show that the salient features of the spin exciton can be explained in an itinerant quasiparticle model supplemented by hidden and antiferromagnetic order. More... »

PAGES

82

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2012-30896-0

DOI

http://dx.doi.org/10.1140/epjb/e2012-30896-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024365680


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Chemische Physik fester Stoffe, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thalmeier", 
        "givenName": "Peter", 
        "id": "sg:person.015501240375.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Chemische Physik fester Stoffe, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akbari", 
        "givenName": "Alireza", 
        "id": "sg:person.07603456351.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07603456351.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.94.107005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000586825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.107005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000586825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.017203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002018948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.017203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002018948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.057002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003442052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.057002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003442052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006495339", 
          "https://doi.org/10.1038/nphys1852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.106402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008291166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.106402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008291166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(85)90270-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008625123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(85)90270-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008625123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.134516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019104314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.134516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019104314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.024503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021653906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.024503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021653906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.087001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029099212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.087001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029099212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.037002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029170933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.037002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029170933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.167207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041875725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.167207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041875725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.047005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043981255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.047005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043981255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.146403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045667360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.146403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045667360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046436224", 
          "https://doi.org/10.1038/ncomms1821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.187001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046812498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.187001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046812498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(87)90700-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047646147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.112.1900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.112.1900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.26.4883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.26.4883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.180504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.180504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.174417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060638794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.174417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060638794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.137204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.137204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.66.1741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063116478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.67.941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063117779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.70.2746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063119617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.71.1771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063120088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.72.1216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063120536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.72.3219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063120926"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03", 
    "datePublishedReg": "2013-03-01", 
    "description": "The formation of collective spin excitons below the single particle continuum is observed in numerous unconventional superconductors. CeCoIn5 is the most well established case for heavy fermion compounds. It is also the first example where the splitting of magnetic excitons by a magnetic field is observed for fields within the tetragonal plane. Contrary to expectations it is revealed as a doublet excitation. We explain the splitting as the result of a strongly anisotropic spin response described within the context of an Anderson lattice type model. Recently it was shown that collective spin excitations also appear within the hidden order phase of non- superconducting CeB6. It is a signature of the itinerant nature of spin response as opposed to the commonly used localized 4f approach in this compound. We show that the salient features of the spin exciton can be explained in an itinerant quasiparticle model supplemented by hidden and antiferromagnetic order.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2012-30896-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "name": "Spin excitons in the unconventional superconducting and hidden order state of strongly correlated electrons", 
    "pagination": "82", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7414a160bd243e1992d59a9403dd50cc93e471b683d643603ca08a17bc6ddd07"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2012-30896-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024365680"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2012-30896-0", 
      "https://app.dimensions.ai/details/publication/pub.1024365680"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140/epjb/e2012-30896-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2012-30896-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2012-30896-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2012-30896-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2012-30896-0'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2012-30896-0 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nff9119f676f947e1b6b23acb5fcca26c
4 schema:citation sg:pub.10.1038/ncomms1821
5 sg:pub.10.1038/nphys1852
6 https://doi.org/10.1016/0304-8853(85)90270-7
7 https://doi.org/10.1016/0304-8853(87)90700-1
8 https://doi.org/10.1103/physrev.112.1900
9 https://doi.org/10.1103/physrevb.26.4883
10 https://doi.org/10.1103/physrevb.65.180504
11 https://doi.org/10.1103/physrevb.75.024503
12 https://doi.org/10.1103/physrevb.85.174417
13 https://doi.org/10.1103/physrevb.86.134516
14 https://doi.org/10.1103/physrevlett.100.087001
15 https://doi.org/10.1103/physrevlett.101.187001
16 https://doi.org/10.1103/physrevlett.102.106402
17 https://doi.org/10.1103/physrevlett.103.017203
18 https://doi.org/10.1103/physrevlett.104.037002
19 https://doi.org/10.1103/physrevlett.108.146403
20 https://doi.org/10.1103/physrevlett.109.167207
21 https://doi.org/10.1103/physrevlett.87.057002
22 https://doi.org/10.1103/physrevlett.94.107005
23 https://doi.org/10.1103/physrevlett.99.047005
24 https://doi.org/10.1103/physrevlett.99.137204
25 https://doi.org/10.1143/jpsj.66.1741
26 https://doi.org/10.1143/jpsj.67.941
27 https://doi.org/10.1143/jpsj.70.2746
28 https://doi.org/10.1143/jpsj.71.1771
29 https://doi.org/10.1143/jpsj.72.1216
30 https://doi.org/10.1143/jpsj.72.3219
31 schema:datePublished 2013-03
32 schema:datePublishedReg 2013-03-01
33 schema:description The formation of collective spin excitons below the single particle continuum is observed in numerous unconventional superconductors. CeCoIn5 is the most well established case for heavy fermion compounds. It is also the first example where the splitting of magnetic excitons by a magnetic field is observed for fields within the tetragonal plane. Contrary to expectations it is revealed as a doublet excitation. We explain the splitting as the result of a strongly anisotropic spin response described within the context of an Anderson lattice type model. Recently it was shown that collective spin excitations also appear within the hidden order phase of non- superconducting CeB6. It is a signature of the itinerant nature of spin response as opposed to the commonly used localized 4f approach in this compound. We show that the salient features of the spin exciton can be explained in an itinerant quasiparticle model supplemented by hidden and antiferromagnetic order.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf Nde2ca5f1d235420187c599be722feaa6
38 Nf56ecec074a14b6e83f79935177f1698
39 sg:journal.1129956
40 schema:name Spin excitons in the unconventional superconducting and hidden order state of strongly correlated electrons
41 schema:pagination 82
42 schema:productId N85c258c92a3c4a559671288181e26e7d
43 N924f93c0a9f74debb3da378de1c55c71
44 Nfd56835fe70e4083895bbc5f268d5c89
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024365680
46 https://doi.org/10.1140/epjb/e2012-30896-0
47 schema:sdDatePublished 2019-04-10T18:17
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N5704009c1a5b4e358edd5fe3d7cb9395
50 schema:url http://link.springer.com/10.1140/epjb/e2012-30896-0
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N5516dd07b0a34414a8467d9b8fb03b06 rdf:first sg:person.07603456351.53
55 rdf:rest rdf:nil
56 N5704009c1a5b4e358edd5fe3d7cb9395 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N85c258c92a3c4a559671288181e26e7d schema:name dimensions_id
59 schema:value pub.1024365680
60 rdf:type schema:PropertyValue
61 N924f93c0a9f74debb3da378de1c55c71 schema:name doi
62 schema:value 10.1140/epjb/e2012-30896-0
63 rdf:type schema:PropertyValue
64 Nde2ca5f1d235420187c599be722feaa6 schema:volumeNumber 86
65 rdf:type schema:PublicationVolume
66 Nf56ecec074a14b6e83f79935177f1698 schema:issueNumber 3
67 rdf:type schema:PublicationIssue
68 Nfd56835fe70e4083895bbc5f268d5c89 schema:name readcube_id
69 schema:value 7414a160bd243e1992d59a9403dd50cc93e471b683d643603ca08a17bc6ddd07
70 rdf:type schema:PropertyValue
71 Nff9119f676f947e1b6b23acb5fcca26c rdf:first sg:person.015501240375.83
72 rdf:rest N5516dd07b0a34414a8467d9b8fb03b06
73 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
77 schema:name Other Physical Sciences
78 rdf:type schema:DefinedTerm
79 sg:journal.1129956 schema:issn 1155-4304
80 1286-4862
81 schema:name The European Physical Journal B
82 rdf:type schema:Periodical
83 sg:person.015501240375.83 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
84 schema:familyName Thalmeier
85 schema:givenName Peter
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83
87 rdf:type schema:Person
88 sg:person.07603456351.53 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
89 schema:familyName Akbari
90 schema:givenName Alireza
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07603456351.53
92 rdf:type schema:Person
93 sg:pub.10.1038/ncomms1821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046436224
94 https://doi.org/10.1038/ncomms1821
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/nphys1852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006495339
97 https://doi.org/10.1038/nphys1852
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0304-8853(85)90270-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008625123
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0304-8853(87)90700-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047646147
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrev.112.1900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060421010
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevb.26.4883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060531539
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.65.180504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060603072
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevb.75.024503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021653906
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevb.85.174417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060638794
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevb.86.134516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019104314
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.100.087001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029099212
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.101.187001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046812498
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevlett.102.106402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008291166
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevlett.103.017203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002018948
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.104.037002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029170933
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevlett.108.146403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045667360
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevlett.109.167207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041875725
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.87.057002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003442052
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.94.107005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000586825
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.99.047005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043981255
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.99.137204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834649
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1143/jpsj.66.1741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063116478
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1143/jpsj.67.941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063117779
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1143/jpsj.70.2746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063119617
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1143/jpsj.71.1771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063120088
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1143/jpsj.72.1216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063120536
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1143/jpsj.72.3219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063120926
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
150 schema:name Max-Planck-Institut für Chemische Physik fester Stoffe, 01187, Dresden, Germany
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...