Electronic and magnetic properties of NiS2, NiSSe and NiSe2 by a combination of theoretical methods View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-09-24

AUTHORS

Cosima Schuster, Matteo Gatti, Angel Rubio

ABSTRACT

We investigate the electronic and magnetic properties of NiS2, which, by varying the chemical composition substituting S by Se atoms or applying pressure, can be driven across various electronic and magnetic phase transitions. By combining several theoretical methods, we highlight the different role played by the chalcogen dimers and the volume compression in determining the phase transitions, through variations of the chalcogen p bonding-antibonding gap, the crystal-field splitting and the broadening of the bandwidths. While the generalized gradient approximation (GGA) of density-functional theory fails to reproduce the insulating nature of NiS2, it describes well the magnetic boundaries of the phase diagram. The large GGA delocalization error is corrected to a large extent by the use of GGA + U, hybrid functionals or the self-consistent COHSEX + GW approximation. We also discuss the advantages and the shortcomings of the different approximations in the various regions of the phase diagram of this prototypical correlated compound. More... »

PAGES

325

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2012-30384-7

DOI

http://dx.doi.org/10.1140/epjb/e2012-30384-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024867637


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, D-86135, Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, D-86135, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schuster", 
        "givenName": "Cosima", 
        "id": "sg:person.01013640155.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013640155.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nano-Bio Spectroscopy Group and ETSF Scientific Development Center, Dpto. F\u00edsica de Materiales, Centro de F\u00edsica de Materiales CSIC-UPV/EHU-MPC and DIPC, Universidad del Pa\u00eds Vasco UPV/EHU, Avenida Tolosa 72, E-20018, San Sebasti\u00e1n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.11480.3c", 
          "name": [
            "Nano-Bio Spectroscopy Group and ETSF Scientific Development Center, Dpto. F\u00edsica de Materiales, Centro de F\u00edsica de Materiales CSIC-UPV/EHU-MPC and DIPC, Universidad del Pa\u00eds Vasco UPV/EHU, Avenida Tolosa 72, E-20018, San Sebasti\u00e1n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gatti", 
        "givenName": "Matteo", 
        "id": "sg:person.01115574145.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115574145.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nano-Bio Spectroscopy Group and ETSF Scientific Development Center, Dpto. F\u00edsica de Materiales, Centro de F\u00edsica de Materiales CSIC-UPV/EHU-MPC and DIPC, Universidad del Pa\u00eds Vasco UPV/EHU, Avenida Tolosa 72, E-20018, San Sebasti\u00e1n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.11480.3c", 
          "name": [
            "Nano-Bio Spectroscopy Group and ETSF Scientific Development Center, Dpto. F\u00edsica de Materiales, Centro de F\u00edsica de Materiales CSIC-UPV/EHU-MPC and DIPC, Universidad del Pa\u00eds Vasco UPV/EHU, Avenida Tolosa 72, E-20018, San Sebasti\u00e1n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rubio", 
        "givenName": "Angel", 
        "id": "sg:person.01222456463.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222456463.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012-09-24", 
    "datePublishedReg": "2012-09-24", 
    "description": "We investigate the electronic and magnetic properties of NiS2, which, by varying the chemical composition substituting S by Se atoms or applying pressure, can be driven across various electronic and magnetic phase transitions. By combining several theoretical methods, we highlight the different role played by the chalcogen dimers and the volume compression in determining the phase transitions, through variations of the chalcogen p bonding-antibonding gap, the crystal-field splitting and the broadening of the bandwidths. While the generalized gradient approximation (GGA) of density-functional theory fails to reproduce the insulating nature of NiS2, it describes well the magnetic boundaries of the phase diagram. The large GGA delocalization error is corrected to a large extent by the use of GGA + U, hybrid functionals or the self-consistent COHSEX + GW approximation. We also discuss the advantages and the shortcomings of the different approximations in the various regions of the phase diagram of this prototypical correlated compound.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjb/e2012-30384-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "85"
      }
    ], 
    "keywords": [
      "crystal-field splitting", 
      "magnetic properties", 
      "density-functional theory", 
      "theoretical methods", 
      "magnetic phase transition", 
      "phase transition", 
      "chalcogen dimers", 
      "magnetic boundary", 
      "phase diagram", 
      "Se atoms", 
      "use of GGA", 
      "GW approximation", 
      "gradient approximation", 
      "delocalization error", 
      "hybrid functionals", 
      "different approximations", 
      "approximation", 
      "transition", 
      "atoms", 
      "broadening", 
      "splitting", 
      "volume compression", 
      "diagram", 
      "properties", 
      "NiS2", 
      "GGA", 
      "gap", 
      "bandwidth", 
      "functionals", 
      "theory", 
      "dimer", 
      "boundaries", 
      "region", 
      "method", 
      "large extent", 
      "nature", 
      "pressure", 
      "variation", 
      "advantages", 
      "NiSe2", 
      "compression", 
      "error", 
      "combination", 
      "compounds", 
      "use", 
      "different roles", 
      "role", 
      "shortcomings", 
      "extent", 
      "Nisse", 
      "chemical composition substituting S", 
      "composition substituting S", 
      "substituting S", 
      "chalcogen p bonding-antibonding gap", 
      "p bonding-antibonding gap", 
      "bonding-antibonding gap", 
      "nature of NiS2", 
      "large GGA delocalization error", 
      "GGA delocalization error", 
      "self-consistent COHSEX", 
      "COHSEX"
    ], 
    "name": "Electronic and magnetic properties of NiS2, NiSSe and NiSe2 by a combination of theoretical methods", 
    "pagination": "325", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024867637"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2012-30384-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2012-30384-7", 
      "https://app.dimensions.ai/details/publication/pub.1024867637"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_565.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjb/e2012-30384-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2012-30384-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2012-30384-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2012-30384-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2012-30384-7'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      86 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2012-30384-7 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author N9408b968877944c0acb9d5b1d6220fbd
4 schema:datePublished 2012-09-24
5 schema:datePublishedReg 2012-09-24
6 schema:description We investigate the electronic and magnetic properties of NiS2, which, by varying the chemical composition substituting S by Se atoms or applying pressure, can be driven across various electronic and magnetic phase transitions. By combining several theoretical methods, we highlight the different role played by the chalcogen dimers and the volume compression in determining the phase transitions, through variations of the chalcogen p bonding-antibonding gap, the crystal-field splitting and the broadening of the bandwidths. While the generalized gradient approximation (GGA) of density-functional theory fails to reproduce the insulating nature of NiS2, it describes well the magnetic boundaries of the phase diagram. The large GGA delocalization error is corrected to a large extent by the use of GGA + U, hybrid functionals or the self-consistent COHSEX + GW approximation. We also discuss the advantages and the shortcomings of the different approximations in the various regions of the phase diagram of this prototypical correlated compound.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N43eda10c431143d1b73e2f221be5016f
11 N7021db21b45a4485ad3db3caf1b4bfe2
12 sg:journal.1129956
13 schema:keywords COHSEX
14 GGA
15 GGA delocalization error
16 GW approximation
17 NiS2
18 NiSe2
19 Nisse
20 Se atoms
21 advantages
22 approximation
23 atoms
24 bandwidth
25 bonding-antibonding gap
26 boundaries
27 broadening
28 chalcogen dimers
29 chalcogen p bonding-antibonding gap
30 chemical composition substituting S
31 combination
32 composition substituting S
33 compounds
34 compression
35 crystal-field splitting
36 delocalization error
37 density-functional theory
38 diagram
39 different approximations
40 different roles
41 dimer
42 error
43 extent
44 functionals
45 gap
46 gradient approximation
47 hybrid functionals
48 large GGA delocalization error
49 large extent
50 magnetic boundary
51 magnetic phase transition
52 magnetic properties
53 method
54 nature
55 nature of NiS2
56 p bonding-antibonding gap
57 phase diagram
58 phase transition
59 pressure
60 properties
61 region
62 role
63 self-consistent COHSEX
64 shortcomings
65 splitting
66 substituting S
67 theoretical methods
68 theory
69 transition
70 use
71 use of GGA
72 variation
73 volume compression
74 schema:name Electronic and magnetic properties of NiS2, NiSSe and NiSe2 by a combination of theoretical methods
75 schema:pagination 325
76 schema:productId N35c0425727494fabbd57510642cc4021
77 N44e5e27dc1614bd29a854604625b23f6
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024867637
79 https://doi.org/10.1140/epjb/e2012-30384-7
80 schema:sdDatePublished 2021-11-01T18:17
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N58b5e35102ec4932918a882ed014bb93
83 schema:url https://doi.org/10.1140/epjb/e2012-30384-7
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N35c0425727494fabbd57510642cc4021 schema:name doi
88 schema:value 10.1140/epjb/e2012-30384-7
89 rdf:type schema:PropertyValue
90 N43eda10c431143d1b73e2f221be5016f schema:issueNumber 9
91 rdf:type schema:PublicationIssue
92 N44e5e27dc1614bd29a854604625b23f6 schema:name dimensions_id
93 schema:value pub.1024867637
94 rdf:type schema:PropertyValue
95 N4b14a6baec344603bf2fae1abe65c6ca rdf:first sg:person.01222456463.35
96 rdf:rest rdf:nil
97 N4caafa27190e409a862d81148bd7ba15 rdf:first sg:person.01115574145.05
98 rdf:rest N4b14a6baec344603bf2fae1abe65c6ca
99 N58b5e35102ec4932918a882ed014bb93 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N7021db21b45a4485ad3db3caf1b4bfe2 schema:volumeNumber 85
102 rdf:type schema:PublicationVolume
103 N9408b968877944c0acb9d5b1d6220fbd rdf:first sg:person.01013640155.61
104 rdf:rest N4caafa27190e409a862d81148bd7ba15
105 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
106 schema:name Physical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
109 schema:name Condensed Matter Physics
110 rdf:type schema:DefinedTerm
111 sg:journal.1129956 schema:issn 1155-4304
112 1286-4862
113 schema:name The European Physical Journal B
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.01013640155.61 schema:affiliation grid-institutes:grid.7307.3
117 schema:familyName Schuster
118 schema:givenName Cosima
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013640155.61
120 rdf:type schema:Person
121 sg:person.01115574145.05 schema:affiliation grid-institutes:grid.11480.3c
122 schema:familyName Gatti
123 schema:givenName Matteo
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115574145.05
125 rdf:type schema:Person
126 sg:person.01222456463.35 schema:affiliation grid-institutes:grid.11480.3c
127 schema:familyName Rubio
128 schema:givenName Angel
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222456463.35
130 rdf:type schema:Person
131 grid-institutes:grid.11480.3c schema:alternateName Nano-Bio Spectroscopy Group and ETSF Scientific Development Center, Dpto. Física de Materiales, Centro de Física de Materiales CSIC-UPV/EHU-MPC and DIPC, Universidad del País Vasco UPV/EHU, Avenida Tolosa 72, E-20018, San Sebastián, Spain
132 schema:name Nano-Bio Spectroscopy Group and ETSF Scientific Development Center, Dpto. Física de Materiales, Centro de Física de Materiales CSIC-UPV/EHU-MPC and DIPC, Universidad del País Vasco UPV/EHU, Avenida Tolosa 72, E-20018, San Sebastián, Spain
133 rdf:type schema:Organization
134 grid-institutes:grid.7307.3 schema:alternateName Institut für Physik, Universität Augsburg, D-86135, Augsburg, Germany
135 schema:name Institut für Physik, Universität Augsburg, D-86135, Augsburg, Germany
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...