Study of random sequential adsorption by means of the gradient method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02

AUTHORS

E. S. Loscar, N. Guisoni, E. V. Albano

ABSTRACT

By using the gradient method (GM) we study random sequential adsorption (RSA) processes in two dimensions under a gradient constraint that is imposed on the adsorption probability along one axis of the sample. The GM has previously been applied successfully to absorbing phase transitions (both first and second order), and also to the percolation transition. Now, we show that by using the GM the two transitions involved in RSA processes, namely percolation and jamming, can be studied simultaneously by means of the same set of simulations and by using the same theoretical background. For this purpose we theoretically derive the relevant scaling relationships for the RSA of monomers and we tested our analytical results by means of numerical simulations performed upon RSA of both monomers and dimers. We also show that two differently defined interfaces, which run in the direction perpendicular to the axis where the adsorption probability gradient is applied and separate the high-density (large-adsorption probability) and the low-density (low-adsorption probability) regimes, capture the main features of the jamming and percolation transitions, respectively. According to the GM, the scaling behaviour of those interfaces is governed by the roughness exponent α = 1/(1 + ν), where ν is the suitable correlation length exponent. Besides, we present and discuss in a brief overview some achievements of the GM as applied to different physical situations, including a comparison of the critical exponents determined in the present paper with those already published in the literature. More... »

PAGES

60

References to SciGraph publications

  • 2001-06. Jamming phase diagram for attractive particles in NATURE
  • 2003-11. Scaling behavior of jamming fluctuations upon random sequential adsorption in THE EUROPEAN PHYSICAL JOURNAL B
  • 2000-04. A new universality for random sequential deposition of needles in THE EUROPEAN PHYSICAL JOURNAL B
  • 2010-03. Percolation of aligned dimers on a square lattice in THE EUROPEAN PHYSICAL JOURNAL B
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjb/e2012-20958-8

    DOI

    http://dx.doi.org/10.1140/epjb/e2012-20958-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027426413


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National University of La Plata", 
              "id": "https://www.grid.ac/institutes/grid.9499.d", 
              "name": [
                "Instituto de Investigaciones Fisicoqu\u00edmicas Te\u00f3ricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CCT-La Plata, Sucursal 4, CC 16 (1900), La Plata, Argentina", 
                "Departamento de F\u00edsica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Loscar", 
            "givenName": "E. S.", 
            "id": "sg:person.01367355314.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367355314.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de Fisica de Liquidos y Sistemas Biologicos", 
              "id": "https://www.grid.ac/institutes/grid.472566.4", 
              "name": [
                "Instituto de F\u00edsica de L\u00edquidos y Sistemas Biol\u00f3gicos (IFLYSIB), Universidad Nacional de La Plata, CONICET CCT-La Plata; CC 565 (1900), La Plata, Argentina"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guisoni", 
            "givenName": "N.", 
            "id": "sg:person.0623560532.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623560532.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto de Fisica de Liquidos y Sistemas Biologicos", 
              "id": "https://www.grid.ac/institutes/grid.472566.4", 
              "name": [
                "Departamento de F\u00edsica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina", 
                "Instituto de F\u00edsica de L\u00edquidos y Sistemas Biol\u00f3gicos (IFLYSIB), Universidad Nacional de La Plata, CONICET CCT-La Plata; CC 565 (1900), La Plata, Argentina"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Albano", 
            "givenName": "E. V.", 
            "id": "sg:person.0656305464.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656305464.66"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/00018730050198152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000914047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s100510051047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001426094", 
              "https://doi.org/10.1007/s100510051047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0927-7757(99)00412-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003008408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4371(95)00015-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005761961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0960-0779(95)80044-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012702124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0960-0779(95)80044-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012702124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4371(94)90308-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016531642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4371(94)90308-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016531642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35081021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022509262", 
              "https://doi.org/10.1038/35081021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35081021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022509262", 
              "https://doi.org/10.1038/35081021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35081021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022509262", 
              "https://doi.org/10.1038/35081021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/30/9/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026599413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4371(93)90066-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026818156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4371(93)90066-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026818156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.106.128103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030925915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.106.128103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030925915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.2795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032129341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.2795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032129341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/66/8/203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033029254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.63.051108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034950986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.63.051108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034950986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.56.r6241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035076399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.56.r6241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035076399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.74.051601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037762142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.74.051601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037762142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1359740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039604855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.phpro.2011.06.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044301460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.178001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045181536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.178001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045181536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2010-00089-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045299527", 
              "https://doi.org/10.1140/epjb/e2010-00089-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2003-00329-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047582992", 
              "https://doi.org/10.1140/epjb/e2003-00329-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-4371(03)00431-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052653026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-4371(03)00431-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052653026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jphyslet:01985004604014900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057009948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1578616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057722336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1756853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057815746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2161206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057840551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.457800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058035812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/19/18/010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059068230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/26/17/025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059073134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.46.4630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060486280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.46.4630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060486280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.48.r3229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060716093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.48.r3229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060716093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.64.066111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060727681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.64.066111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060727681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.051123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060739724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.051123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060739724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.83.011125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060741369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.83.011125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060741369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.56.2553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060793314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.56.2553", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060793314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.245503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060825713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.245503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060825713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.65.1281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.65.1281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839278"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-02", 
        "datePublishedReg": "2012-02-01", 
        "description": "By using the gradient method (GM) we study random sequential adsorption (RSA) processes in two dimensions under a gradient constraint that is imposed on the adsorption probability along one axis of the sample. The GM has previously been applied successfully to absorbing phase transitions (both first and second order), and also to the percolation transition. Now, we show that by using the GM the two transitions involved in RSA processes, namely percolation and jamming, can be studied simultaneously by means of the same set of simulations and by using the same theoretical background. For this purpose we theoretically derive the relevant scaling relationships for the RSA of monomers and we tested our analytical results by means of numerical simulations performed upon RSA of both monomers and dimers. We also show that two differently defined interfaces, which run in the direction perpendicular to the axis where the adsorption probability gradient is applied and separate the high-density (large-adsorption probability) and the low-density (low-adsorption probability) regimes, capture the main features of the jamming and percolation transitions, respectively. According to the GM, the scaling behaviour of those interfaces is governed by the roughness exponent \u03b1 = 1/(1 + \u03bd), where \u03bd is the suitable correlation length exponent. Besides, we present and discuss in a brief overview some achievements of the GM as applied to different physical situations, including a comparison of the critical exponents determined in the present paper with those already published in the literature.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1140/epjb/e2012-20958-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1129956", 
            "issn": [
              "1155-4304", 
              "1286-4862"
            ], 
            "name": "The European Physical Journal B", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "85"
          }
        ], 
        "name": "Study of random sequential adsorption by means of the gradient method", 
        "pagination": "60", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "82a66203ad2a4c1cb2909438a984f8433eed2afba0fc801f1d5dacead1f5be1c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjb/e2012-20958-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027426413"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjb/e2012-20958-8", 
          "https://app.dimensions.ai/details/publication/pub.1027426413"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000500.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1140/epjb/e2012-20958-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2012-20958-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2012-20958-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2012-20958-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2012-20958-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    192 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjb/e2012-20958-8 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Nde645aaa90c049699cae916d09526e61
    4 schema:citation sg:pub.10.1007/s100510051047
    5 sg:pub.10.1038/35081021
    6 sg:pub.10.1140/epjb/e2003-00329-6
    7 sg:pub.10.1140/epjb/e2010-00089-2
    8 https://doi.org/10.1016/0378-4371(93)90066-d
    9 https://doi.org/10.1016/0378-4371(94)90308-5
    10 https://doi.org/10.1016/0378-4371(95)00015-y
    11 https://doi.org/10.1016/0960-0779(95)80044-h
    12 https://doi.org/10.1016/j.phpro.2011.06.009
    13 https://doi.org/10.1016/s0378-4371(03)00431-x
    14 https://doi.org/10.1016/s0927-7757(99)00412-4
    15 https://doi.org/10.1051/jphyslet:01985004604014900
    16 https://doi.org/10.1063/1.1359740
    17 https://doi.org/10.1063/1.1578616
    18 https://doi.org/10.1063/1.1756853
    19 https://doi.org/10.1063/1.2161206
    20 https://doi.org/10.1063/1.457800
    21 https://doi.org/10.1080/00018730050198152
    22 https://doi.org/10.1088/0034-4885/66/8/203
    23 https://doi.org/10.1088/0305-4470/19/18/010
    24 https://doi.org/10.1088/0305-4470/26/17/025
    25 https://doi.org/10.1088/0305-4470/30/9/003
    26 https://doi.org/10.1103/physreva.46.4630
    27 https://doi.org/10.1103/physrevb.50.2795
    28 https://doi.org/10.1103/physreve.48.r3229
    29 https://doi.org/10.1103/physreve.56.r6241
    30 https://doi.org/10.1103/physreve.63.051108
    31 https://doi.org/10.1103/physreve.64.066111
    32 https://doi.org/10.1103/physreve.74.051601
    33 https://doi.org/10.1103/physreve.80.051123
    34 https://doi.org/10.1103/physreve.83.011125
    35 https://doi.org/10.1103/physrevlett.106.128103
    36 https://doi.org/10.1103/physrevlett.56.2553
    37 https://doi.org/10.1103/physrevlett.89.245503
    38 https://doi.org/10.1103/physrevlett.99.178001
    39 https://doi.org/10.1103/revmodphys.65.1281
    40 schema:datePublished 2012-02
    41 schema:datePublishedReg 2012-02-01
    42 schema:description By using the gradient method (GM) we study random sequential adsorption (RSA) processes in two dimensions under a gradient constraint that is imposed on the adsorption probability along one axis of the sample. The GM has previously been applied successfully to absorbing phase transitions (both first and second order), and also to the percolation transition. Now, we show that by using the GM the two transitions involved in RSA processes, namely percolation and jamming, can be studied simultaneously by means of the same set of simulations and by using the same theoretical background. For this purpose we theoretically derive the relevant scaling relationships for the RSA of monomers and we tested our analytical results by means of numerical simulations performed upon RSA of both monomers and dimers. We also show that two differently defined interfaces, which run in the direction perpendicular to the axis where the adsorption probability gradient is applied and separate the high-density (large-adsorption probability) and the low-density (low-adsorption probability) regimes, capture the main features of the jamming and percolation transitions, respectively. According to the GM, the scaling behaviour of those interfaces is governed by the roughness exponent α = 1/(1 + ν), where ν is the suitable correlation length exponent. Besides, we present and discuss in a brief overview some achievements of the GM as applied to different physical situations, including a comparison of the critical exponents determined in the present paper with those already published in the literature.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree false
    46 schema:isPartOf N0908ab7264f3416da8144eeaff14f469
    47 N8afd789f244f4a3ea5207c7e57e67bb4
    48 sg:journal.1129956
    49 schema:name Study of random sequential adsorption by means of the gradient method
    50 schema:pagination 60
    51 schema:productId N8d7fef7471654031a03a21fc64339a40
    52 Nac3a38be81c04027950dc7014d6996c1
    53 Nc4b7806418634f0a886b8f0a6ef56482
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027426413
    55 https://doi.org/10.1140/epjb/e2012-20958-8
    56 schema:sdDatePublished 2019-04-10T19:06
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N03fb0f5e08a94d1cb09739cb3fcb1553
    59 schema:url http://link.springer.com/10.1140/epjb/e2012-20958-8
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N03fb0f5e08a94d1cb09739cb3fcb1553 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 N0908ab7264f3416da8144eeaff14f469 schema:volumeNumber 85
    66 rdf:type schema:PublicationVolume
    67 N100ea17459e54dd7b1992580f0086130 rdf:first sg:person.0656305464.66
    68 rdf:rest rdf:nil
    69 N8afd789f244f4a3ea5207c7e57e67bb4 schema:issueNumber 2
    70 rdf:type schema:PublicationIssue
    71 N8d7fef7471654031a03a21fc64339a40 schema:name doi
    72 schema:value 10.1140/epjb/e2012-20958-8
    73 rdf:type schema:PropertyValue
    74 Nac3a38be81c04027950dc7014d6996c1 schema:name readcube_id
    75 schema:value 82a66203ad2a4c1cb2909438a984f8433eed2afba0fc801f1d5dacead1f5be1c
    76 rdf:type schema:PropertyValue
    77 Nc4b7806418634f0a886b8f0a6ef56482 schema:name dimensions_id
    78 schema:value pub.1027426413
    79 rdf:type schema:PropertyValue
    80 Nde645aaa90c049699cae916d09526e61 rdf:first sg:person.01367355314.05
    81 rdf:rest Nefba193da97e4e9ca19490993462c392
    82 Nefba193da97e4e9ca19490993462c392 rdf:first sg:person.0623560532.39
    83 rdf:rest N100ea17459e54dd7b1992580f0086130
    84 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Chemical Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Physical Chemistry (incl. Structural)
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1129956 schema:issn 1155-4304
    91 1286-4862
    92 schema:name The European Physical Journal B
    93 rdf:type schema:Periodical
    94 sg:person.01367355314.05 schema:affiliation https://www.grid.ac/institutes/grid.9499.d
    95 schema:familyName Loscar
    96 schema:givenName E. S.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367355314.05
    98 rdf:type schema:Person
    99 sg:person.0623560532.39 schema:affiliation https://www.grid.ac/institutes/grid.472566.4
    100 schema:familyName Guisoni
    101 schema:givenName N.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623560532.39
    103 rdf:type schema:Person
    104 sg:person.0656305464.66 schema:affiliation https://www.grid.ac/institutes/grid.472566.4
    105 schema:familyName Albano
    106 schema:givenName E. V.
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656305464.66
    108 rdf:type schema:Person
    109 sg:pub.10.1007/s100510051047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001426094
    110 https://doi.org/10.1007/s100510051047
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1038/35081021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022509262
    113 https://doi.org/10.1038/35081021
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1140/epjb/e2003-00329-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047582992
    116 https://doi.org/10.1140/epjb/e2003-00329-6
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1140/epjb/e2010-00089-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045299527
    119 https://doi.org/10.1140/epjb/e2010-00089-2
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/0378-4371(93)90066-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1026818156
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/0378-4371(94)90308-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016531642
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/0378-4371(95)00015-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005761961
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/0960-0779(95)80044-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1012702124
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.phpro.2011.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044301460
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/s0378-4371(03)00431-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052653026
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/s0927-7757(99)00412-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003008408
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1051/jphyslet:01985004604014900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057009948
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1063/1.1359740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039604855
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1063/1.1578616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057722336
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1063/1.1756853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057815746
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1063/1.2161206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057840551
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1063/1.457800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058035812
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1080/00018730050198152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000914047
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1088/0034-4885/66/8/203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033029254
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1088/0305-4470/19/18/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059068230
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1088/0305-4470/26/17/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059073134
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1088/0305-4470/30/9/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026599413
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1103/physreva.46.4630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060486280
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1103/physrevb.50.2795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032129341
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1103/physreve.48.r3229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060716093
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1103/physreve.56.r6241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035076399
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1103/physreve.63.051108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034950986
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physreve.64.066111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060727681
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physreve.74.051601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037762142
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1103/physreve.80.051123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739724
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1103/physreve.83.011125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060741369
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1103/physrevlett.106.128103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030925915
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1103/physrevlett.56.2553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793314
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1103/physrevlett.89.245503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825713
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1103/physrevlett.99.178001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045181536
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1103/revmodphys.65.1281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839278
    184 rdf:type schema:CreativeWork
    185 https://www.grid.ac/institutes/grid.472566.4 schema:alternateName Instituto de Fisica de Liquidos y Sistemas Biologicos
    186 schema:name Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
    187 Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), Universidad Nacional de La Plata, CONICET CCT-La Plata; CC 565 (1900), La Plata, Argentina
    188 rdf:type schema:Organization
    189 https://www.grid.ac/institutes/grid.9499.d schema:alternateName National University of La Plata
    190 schema:name Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
    191 Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CCT-La Plata, Sucursal 4, CC 16 (1900), La Plata, Argentina
    192 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...