Nonlinear interference in a mean-field quantum model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-11-23

AUTHORS

Gilbert Reinisch, Vidar Gudmundsson

ABSTRACT

Using similar nonlinear stationary mean-field models for both a 2D axisymmetrical Bose-Einstein Condensate and an electron pair in a parabolic trap, we propose to describe the original many-particle ground state as a one-particle mixed state (in contrast to a pure state), i.e. as a statistical ensemble of several one-particle quantum states. These quantum states are the eigenfunctions of the corresponding stationary nonlinear Schrödinger equation (hence called “nonlinear eigenstates”). Due to their nonlinearity, they are not orthogonal. Therefore, taking the simple example of a two-level system, we show that each of these two nonlinear eigenstates |i⟩ and |j⟩ occurs with a probability (or statistical weight) that is defined by their non-orthogonality ⟨i|j⟩ 0. We give the corresponding density matrix. We search for physical grounds in the interpretation of our two main results, namely, a quantum-classical nonlinear transition and the interference between two “nonlinear eigenstates”. More... »

PAGES

699-705

References to SciGraph publications

  • 1982-01. The density distribution of a weakly interacting bose gas in an external potential in JOURNAL OF LOW TEMPERATURE PHYSICS
  • 1991. Quantum Mechanics II in NONE
  • 2006-09-19. Global Attractor for a Nonlinear Oscillator Coupled to the Klein–Gordon Field in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjb/e2011-20725-5

    DOI

    http://dx.doi.org/10.1140/epjb/e2011-20725-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035163772


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "CNRS, Observatoire de la C\u00f4te d\u2019Azur, Universit\u00e9 de Nice \u2014 Sophia Antipolis, BP 4229, 06304, Nice Cedex 4, France", 
              "id": "http://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "CNRS, Observatoire de la C\u00f4te d\u2019Azur, Universit\u00e9 de Nice \u2014 Sophia Antipolis, BP 4229, 06304, Nice Cedex 4, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reinisch", 
            "givenName": "Gilbert", 
            "id": "sg:person.014114452675.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014114452675.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Science Institute, University of Iceland, Dunhaga 3, 107, Reykjavik, Iceland", 
              "id": "http://www.grid.ac/institutes/grid.14013.37", 
              "name": [
                "Science Institute, University of Iceland, Dunhaga 3, 107, Reykjavik, Iceland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gudmundsson", 
            "givenName": "Vidar", 
            "id": "sg:person.012761464463.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012761464463.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00655448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000115856", 
              "https://doi.org/10.1007/bf00655448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-84129-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004336937", 
              "https://doi.org/10.1007/978-3-642-84129-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-006-0039-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050689414", 
              "https://doi.org/10.1007/s00205-006-0039-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-11-23", 
        "datePublishedReg": "2011-11-23", 
        "description": "Abstract\nUsing similar nonlinear stationary mean-field models for both a 2D axisymmetrical\nBose-Einstein Condensate and an electron pair in a parabolic trap, we propose to describe\nthe original many-particle ground state as a one-particle mixed state (in contrast to a\npure state), i.e. as a statistical ensemble of several one-particle quantum states. These\nquantum states are the eigenfunctions of the corresponding stationary nonlinear\nSchr\u00f6dinger equation (hence called \u201cnonlinear eigenstates\u201d). Due to their nonlinearity,\nthey are not orthogonal. Therefore, taking the simple example of a two-level system, we\nshow that each of these two nonlinear eigenstates |i\u27e9 and\n|j\u27e9 occurs with a probability (or statistical weight) that is\ndefined by their non-orthogonality \u27e8i|j\u27e9 0. We give\nthe corresponding density matrix. We search for physical grounds in the interpretation of\nour two main results, namely, a quantum-classical nonlinear transition and the\ninterference between two \u201cnonlinear eigenstates\u201d.", 
        "genre": "article", 
        "id": "sg:pub.10.1140/epjb/e2011-20725-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1129956", 
            "issn": [
              "1155-4304", 
              "1286-4862"
            ], 
            "name": "The European Physical Journal B", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "84"
          }
        ], 
        "keywords": [
          "nonlinear eigenstates", 
          "quantum states", 
          "Bose-Einstein condensate", 
          "two-level system", 
          "particle ground state", 
          "one-particle", 
          "corresponding density matrix", 
          "mean-field model", 
          "quantum model", 
          "parabolic trap", 
          "ground state", 
          "electron pairs", 
          "density matrix", 
          "Schr\u00f6dinger equation", 
          "statistical ensemble", 
          "nonlinear interference", 
          "physical grounds", 
          "eigenstates", 
          "nonlinear transition", 
          "condensate", 
          "simple example", 
          "state", 
          "traps", 
          "main results", 
          "ensemble", 
          "transition", 
          "nonlinearity", 
          "interference", 
          "eigenfunctions", 
          "equations", 
          "pairs", 
          "model", 
          "ground", 
          "probability", 
          "matrix", 
          "interpretation", 
          "system", 
          "example", 
          "results", 
          "similar nonlinear stationary mean-field models", 
          "nonlinear stationary mean-field models", 
          "stationary mean-field models", 
          "one-particle quantum states", 
          "quantum-classical nonlinear transition", 
          "mean-field quantum model"
        ], 
        "name": "Nonlinear interference in a mean-field quantum model", 
        "pagination": "699-705", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035163772"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjb/e2011-20725-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjb/e2011-20725-5", 
          "https://app.dimensions.ai/details/publication/pub.1035163772"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_535.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1140/epjb/e2011-20725-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2011-20725-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2011-20725-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2011-20725-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2011-20725-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    125 TRIPLES      22 PREDICATES      73 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjb/e2011-20725-5 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N6894cc41b73b4540a126b983f0a8b40c
    4 schema:citation sg:pub.10.1007/978-3-642-84129-3
    5 sg:pub.10.1007/bf00655448
    6 sg:pub.10.1007/s00205-006-0039-z
    7 schema:datePublished 2011-11-23
    8 schema:datePublishedReg 2011-11-23
    9 schema:description Abstract Using similar nonlinear stationary mean-field models for both a 2D axisymmetrical Bose-Einstein Condensate and an electron pair in a parabolic trap, we propose to describe the original many-particle ground state as a one-particle mixed state (in contrast to a pure state), i.e. as a statistical ensemble of several one-particle quantum states. These quantum states are the eigenfunctions of the corresponding stationary nonlinear Schrödinger equation (hence called “nonlinear eigenstates”). Due to their nonlinearity, they are not orthogonal. Therefore, taking the simple example of a two-level system, we show that each of these two nonlinear eigenstates |i⟩ and |j⟩ occurs with a probability (or statistical weight) that is defined by their non-orthogonality ⟨i|j⟩ 0. We give the corresponding density matrix. We search for physical grounds in the interpretation of our two main results, namely, a quantum-classical nonlinear transition and the interference between two “nonlinear eigenstates”.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N4211fa482631449dbb7b0f8b7dd57392
    14 N9e3c74b01723474cbfa9b71150a7de3e
    15 sg:journal.1129956
    16 schema:keywords Bose-Einstein condensate
    17 Schrödinger equation
    18 condensate
    19 corresponding density matrix
    20 density matrix
    21 eigenfunctions
    22 eigenstates
    23 electron pairs
    24 ensemble
    25 equations
    26 example
    27 ground
    28 ground state
    29 interference
    30 interpretation
    31 main results
    32 matrix
    33 mean-field model
    34 mean-field quantum model
    35 model
    36 nonlinear eigenstates
    37 nonlinear interference
    38 nonlinear stationary mean-field models
    39 nonlinear transition
    40 nonlinearity
    41 one-particle
    42 one-particle quantum states
    43 pairs
    44 parabolic trap
    45 particle ground state
    46 physical grounds
    47 probability
    48 quantum model
    49 quantum states
    50 quantum-classical nonlinear transition
    51 results
    52 similar nonlinear stationary mean-field models
    53 simple example
    54 state
    55 stationary mean-field models
    56 statistical ensemble
    57 system
    58 transition
    59 traps
    60 two-level system
    61 schema:name Nonlinear interference in a mean-field quantum model
    62 schema:pagination 699-705
    63 schema:productId N06a71af5fe954a2aa1388d3a1ba119c0
    64 N86ab230829e04825a32bcd3db0907264
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035163772
    66 https://doi.org/10.1140/epjb/e2011-20725-5
    67 schema:sdDatePublished 2022-01-01T18:24
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher N3c00c8dd57ab48c9a844e8374b8a379f
    70 schema:url https://doi.org/10.1140/epjb/e2011-20725-5
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N06a71af5fe954a2aa1388d3a1ba119c0 schema:name doi
    75 schema:value 10.1140/epjb/e2011-20725-5
    76 rdf:type schema:PropertyValue
    77 N3c00c8dd57ab48c9a844e8374b8a379f schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 N4211fa482631449dbb7b0f8b7dd57392 schema:volumeNumber 84
    80 rdf:type schema:PublicationVolume
    81 N6894cc41b73b4540a126b983f0a8b40c rdf:first sg:person.014114452675.28
    82 rdf:rest Ned58a6d50f7245ef9344206e2e282d5e
    83 N86ab230829e04825a32bcd3db0907264 schema:name dimensions_id
    84 schema:value pub.1035163772
    85 rdf:type schema:PropertyValue
    86 N9e3c74b01723474cbfa9b71150a7de3e schema:issueNumber 4
    87 rdf:type schema:PublicationIssue
    88 Ned58a6d50f7245ef9344206e2e282d5e rdf:first sg:person.012761464463.92
    89 rdf:rest rdf:nil
    90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Physical Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    95 rdf:type schema:DefinedTerm
    96 sg:journal.1129956 schema:issn 1155-4304
    97 1286-4862
    98 schema:name The European Physical Journal B
    99 schema:publisher Springer Nature
    100 rdf:type schema:Periodical
    101 sg:person.012761464463.92 schema:affiliation grid-institutes:grid.14013.37
    102 schema:familyName Gudmundsson
    103 schema:givenName Vidar
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012761464463.92
    105 rdf:type schema:Person
    106 sg:person.014114452675.28 schema:affiliation grid-institutes:grid.4444.0
    107 schema:familyName Reinisch
    108 schema:givenName Gilbert
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014114452675.28
    110 rdf:type schema:Person
    111 sg:pub.10.1007/978-3-642-84129-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004336937
    112 https://doi.org/10.1007/978-3-642-84129-3
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/bf00655448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000115856
    115 https://doi.org/10.1007/bf00655448
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s00205-006-0039-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050689414
    118 https://doi.org/10.1007/s00205-006-0039-z
    119 rdf:type schema:CreativeWork
    120 grid-institutes:grid.14013.37 schema:alternateName Science Institute, University of Iceland, Dunhaga 3, 107, Reykjavik, Iceland
    121 schema:name Science Institute, University of Iceland, Dunhaga 3, 107, Reykjavik, Iceland
    122 rdf:type schema:Organization
    123 grid-institutes:grid.4444.0 schema:alternateName CNRS, Observatoire de la Côte d’Azur, Université de Nice — Sophia Antipolis, BP 4229, 06304, Nice Cedex 4, France
    124 schema:name CNRS, Observatoire de la Côte d’Azur, Université de Nice — Sophia Antipolis, BP 4229, 06304, Nice Cedex 4, France
    125 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...