Effect of noise on generalized synchronization of chaos: theory and experiment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-06-22

AUTHORS

O. I. Moskalenko, A. E. Hramov, A. A. Koronovskii, A. A. Ovchinnikov

ABSTRACT

The influence of noise on the generalized synchronization regime in the chaotic systems with dissipative coupling is considered. If attractors of the drive and response systems have an infinitely large basin of attraction, generalized synchronization is shown to possess a great stability with respect to noise. The reasons of the revealed particularity are explained by means of the modified system approach [A.E. Hramov, A.A. Koronovskii, Phys. Rev. E 71, 067201 (2005)] and confirmed by the results of numerical calculations and experimental studies. The main results are illustrated using the examples of unidirectionally coupled chaotic oscillators and discrete maps as well as spatially extended dynamical systems. Different types of the model noise are analyzed. Possible applications of the revealed particularity are briefly discussed. More... »

PAGES

69-82

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2011-11019-1

DOI

http://dx.doi.org/10.1140/epjb/e2011-11019-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028547808


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, 410012, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, 410012, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moskalenko", 
        "givenName": "O. I.", 
        "id": "sg:person.012367310135.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012367310135.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, 410012, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, 410012, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hramov", 
        "givenName": "A. E.", 
        "id": "sg:person.0676765425.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676765425.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, 410012, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, 410012, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koronovskii", 
        "givenName": "A. A.", 
        "id": "sg:person.0637642643.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637642643.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, 410012, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, 410012, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ovchinnikov", 
        "givenName": "A. A.", 
        "id": "sg:person.0641534253.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641534253.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063785006100142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019332159", 
          "https://doi.org/10.1134/s1063785006100142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02761819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009218457", 
          "https://doi.org/10.1007/bf02761819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1536-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052930037", 
          "https://doi.org/10.1007/978-1-4612-1536-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.2086135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039906968", 
          "https://doi.org/10.1134/1.2086135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052077917", 
          "https://doi.org/10.1038/35065745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/438298b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052045712", 
          "https://doi.org/10.1038/438298b"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-06-22", 
    "datePublishedReg": "2011-06-22", 
    "description": "Abstract\nThe influence of noise on the generalized synchronization\nregime in the chaotic systems with dissipative coupling is\nconsidered. If attractors of the drive and response systems have an\ninfinitely large basin of attraction, generalized\nsynchronization is shown to possess a great stability with\nrespect to noise. The reasons of the revealed particularity are\nexplained by means of the modified system approach [A.E. Hramov,\nA.A. Koronovskii, Phys. Rev. E 71, 067201 (2005)] and\nconfirmed by the results of numerical calculations and experimental\nstudies. The main results are illustrated using the examples of\nunidirectionally coupled chaotic oscillators and discrete maps as\nwell as spatially extended dynamical systems. Different types of the\nmodel noise are analyzed. Possible applications of the revealed\nparticularity are briefly discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjb/e2011-11019-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "82"
      }
    ], 
    "keywords": [
      "generalized synchronization", 
      "modified system approach", 
      "dynamical systems", 
      "chaotic systems", 
      "discrete maps", 
      "model noise", 
      "influence of noise", 
      "chaotic oscillators", 
      "effect of noise", 
      "main results", 
      "systems approach", 
      "noise", 
      "dissipative coupling", 
      "synchronization", 
      "numerical calculations", 
      "attractors", 
      "chaos", 
      "response system", 
      "possible applications", 
      "system", 
      "theory", 
      "oscillator", 
      "approach", 
      "drive", 
      "applications", 
      "stability", 
      "large basins", 
      "maps", 
      "different types", 
      "results", 
      "calculations", 
      "attraction", 
      "respect", 
      "coupling", 
      "particularities", 
      "means", 
      "regime", 
      "experiments", 
      "types", 
      "reasons", 
      "influence", 
      "basin", 
      "greater stability", 
      "study", 
      "effect", 
      "example"
    ], 
    "name": "Effect of noise on generalized synchronization of chaos: theory and experiment", 
    "pagination": "69-82", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028547808"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2011-11019-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2011-11019-1", 
      "https://app.dimensions.ai/details/publication/pub.1028547808"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_546.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjb/e2011-11019-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2011-11019-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2011-11019-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2011-11019-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2011-11019-1'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      22 PREDICATES      77 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2011-11019-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6b528aed6d1f40df9aec26ba599b1756
4 schema:citation sg:pub.10.1007/978-1-4612-1536-3
5 sg:pub.10.1007/bf02761819
6 sg:pub.10.1038/35065745
7 sg:pub.10.1038/438298b
8 sg:pub.10.1134/1.2086135
9 sg:pub.10.1134/s1063785006100142
10 schema:datePublished 2011-06-22
11 schema:datePublishedReg 2011-06-22
12 schema:description Abstract The influence of noise on the generalized synchronization regime in the chaotic systems with dissipative coupling is considered. If attractors of the drive and response systems have an infinitely large basin of attraction, generalized synchronization is shown to possess a great stability with respect to noise. The reasons of the revealed particularity are explained by means of the modified system approach [A.E. Hramov, A.A. Koronovskii, Phys. Rev. E 71, 067201 (2005)] and confirmed by the results of numerical calculations and experimental studies. The main results are illustrated using the examples of unidirectionally coupled chaotic oscillators and discrete maps as well as spatially extended dynamical systems. Different types of the model noise are analyzed. Possible applications of the revealed particularity are briefly discussed.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N761206864b904ec69633c431ea0c354f
17 Nf74bf60f565e4ede9fd3f144ca27c306
18 sg:journal.1129956
19 schema:keywords applications
20 approach
21 attraction
22 attractors
23 basin
24 calculations
25 chaos
26 chaotic oscillators
27 chaotic systems
28 coupling
29 different types
30 discrete maps
31 dissipative coupling
32 drive
33 dynamical systems
34 effect
35 effect of noise
36 example
37 experiments
38 generalized synchronization
39 greater stability
40 influence
41 influence of noise
42 large basins
43 main results
44 maps
45 means
46 model noise
47 modified system approach
48 noise
49 numerical calculations
50 oscillator
51 particularities
52 possible applications
53 reasons
54 regime
55 respect
56 response system
57 results
58 stability
59 study
60 synchronization
61 system
62 systems approach
63 theory
64 types
65 schema:name Effect of noise on generalized synchronization of chaos: theory and experiment
66 schema:pagination 69-82
67 schema:productId N478e89f1bc214b7484bc95d04e700a21
68 Nd2d94055898b43ba9f43b4454abd41e2
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028547808
70 https://doi.org/10.1140/epjb/e2011-11019-1
71 schema:sdDatePublished 2021-11-01T18:17
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N9b2b8044a4044f0b95e8373b97546bd5
74 schema:url https://doi.org/10.1140/epjb/e2011-11019-1
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N112e957706614c118e2eb64185ecc836 rdf:first sg:person.0641534253.93
79 rdf:rest rdf:nil
80 N478e89f1bc214b7484bc95d04e700a21 schema:name dimensions_id
81 schema:value pub.1028547808
82 rdf:type schema:PropertyValue
83 N6b528aed6d1f40df9aec26ba599b1756 rdf:first sg:person.012367310135.41
84 rdf:rest N8616c0f5fb484ff3aa4dd47e6200ee1a
85 N761206864b904ec69633c431ea0c354f schema:issueNumber 1
86 rdf:type schema:PublicationIssue
87 N8616c0f5fb484ff3aa4dd47e6200ee1a rdf:first sg:person.0676765425.00
88 rdf:rest Na7aa1d3dd179403aa7db7588245e9105
89 N9b2b8044a4044f0b95e8373b97546bd5 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Na7aa1d3dd179403aa7db7588245e9105 rdf:first sg:person.0637642643.75
92 rdf:rest N112e957706614c118e2eb64185ecc836
93 Nd2d94055898b43ba9f43b4454abd41e2 schema:name doi
94 schema:value 10.1140/epjb/e2011-11019-1
95 rdf:type schema:PropertyValue
96 Nf74bf60f565e4ede9fd3f144ca27c306 schema:volumeNumber 82
97 rdf:type schema:PublicationVolume
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
102 schema:name Pure Mathematics
103 rdf:type schema:DefinedTerm
104 sg:journal.1129956 schema:issn 1155-4304
105 1286-4862
106 schema:name The European Physical Journal B
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.012367310135.41 schema:affiliation grid-institutes:grid.446088.6
110 schema:familyName Moskalenko
111 schema:givenName O. I.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012367310135.41
113 rdf:type schema:Person
114 sg:person.0637642643.75 schema:affiliation grid-institutes:grid.446088.6
115 schema:familyName Koronovskii
116 schema:givenName A. A.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637642643.75
118 rdf:type schema:Person
119 sg:person.0641534253.93 schema:affiliation grid-institutes:grid.446088.6
120 schema:familyName Ovchinnikov
121 schema:givenName A. A.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641534253.93
123 rdf:type schema:Person
124 sg:person.0676765425.00 schema:affiliation grid-institutes:grid.446088.6
125 schema:familyName Hramov
126 schema:givenName A. E.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676765425.00
128 rdf:type schema:Person
129 sg:pub.10.1007/978-1-4612-1536-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052930037
130 https://doi.org/10.1007/978-1-4612-1536-3
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf02761819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009218457
133 https://doi.org/10.1007/bf02761819
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/35065745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052077917
136 https://doi.org/10.1038/35065745
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/438298b schema:sameAs https://app.dimensions.ai/details/publication/pub.1052045712
139 https://doi.org/10.1038/438298b
140 rdf:type schema:CreativeWork
141 sg:pub.10.1134/1.2086135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039906968
142 https://doi.org/10.1134/1.2086135
143 rdf:type schema:CreativeWork
144 sg:pub.10.1134/s1063785006100142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019332159
145 https://doi.org/10.1134/s1063785006100142
146 rdf:type schema:CreativeWork
147 grid-institutes:grid.446088.6 schema:alternateName Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, 410012, Saratov, Russia
148 schema:name Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaya, 83, 410012, Saratov, Russia
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...