Dynamics and performance of susceptibility propagation on synthetic data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-10

AUTHORS

E. Aurell, C. Ollion, Y. Roudi

ABSTRACT

We study the performance and convergence properties of the susceptibility propagation (SusP) algorithm for solving the Inverse Ising problem. We first study how the temperature parameter (T) in a Sherrington-Kirkpatrick model generating the data influences the performance and convergence of the algorithm. We find that at the high temperature regime (T > 4), the algorithm performs well and its quality is only limited by the quality of the supplied data. In the low temperature regime (T < 4), we find that the algorithm typically does not converge, yielding diverging values for the couplings. However, we show that by stopping the algorithm at the right time before divergence becomes serious, good reconstruction can be achieved down to T≈ 2. We then show that dense connectivity, loopiness of the connectivity, and high absolute magnetization all have deteriorating effects on the performance of the algorithm. When absolute magnetization is high, we show that other methods can be work better than SusP. Finally, we show that for neural data with high absolute magnetization, SusP performs less well than TAP inversion. More... »

PAGES

587-595

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2010-00277-0

DOI

http://dx.doi.org/10.1140/epjb/e2010-00277-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019391942


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "AlbaNova", 
          "id": "https://www.grid.ac/institutes/grid.411313.5", 
          "name": [
            "ACCESS Linnaeus Center KTH-Royal Institute of Technology, 100 44, Stockholm, Sweden", 
            "Department of Informatics and Computer Science, Aalto University, FI-02015, Espoo, Finland", 
            "Department of Computational Biology, AlbaNova University Centre, 106 91, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aurell", 
        "givenName": "E.", 
        "id": "sg:person.01104576776.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AlbaNova", 
          "id": "https://www.grid.ac/institutes/grid.411313.5", 
          "name": [
            "ACCESS Linnaeus Center KTH-Royal Institute of Technology, 100 44, Stockholm, Sweden", 
            "Department of Computational Biology, AlbaNova University Centre, 106 91, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ollion", 
        "givenName": "C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nordic Institute for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.450306.4", 
          "name": [
            "NORDITA, Roslagstullsbacken 23, 10691, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roudi", 
        "givenName": "Y.", 
        "id": "sg:person.01013354466.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013354466.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1207/s15516709cog0901_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006217895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15516709cog0901_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006217895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/5/055001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012085114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.051915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012948983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.051915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012948983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013920925", 
          "https://doi.org/10.1038/nature04701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013920925", 
          "https://doi.org/10.1038/nature04701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013920925", 
          "https://doi.org/10.1038/nature04701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/neuro.10.022.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016445020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1282-06.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024730447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0906705106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033928853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036428134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0609152103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043701131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0805923106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044743857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphysparis.2009.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050043408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.2302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060722691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.2302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060722691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.35.1792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060779672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.35.1792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060779672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/09-aos691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064390879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198570837.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098740184"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10", 
    "datePublishedReg": "2010-10-01", 
    "description": "We study the performance and convergence properties of the susceptibility propagation (SusP) algorithm for solving the Inverse Ising problem. We first study how the temperature parameter (T) in a Sherrington-Kirkpatrick model generating the data influences the performance and convergence of the algorithm. We find that at the high temperature regime (T > 4), the algorithm performs well and its quality is only limited by the quality of the supplied data. In the low temperature regime (T < 4), we find that the algorithm typically does not converge, yielding diverging values for the couplings. However, we show that by stopping the algorithm at the right time before divergence becomes serious, good reconstruction can be achieved down to T\u2248 2. We then show that dense connectivity, loopiness of the connectivity, and high absolute magnetization all have deteriorating effects on the performance of the algorithm. When absolute magnetization is high, we show that other methods can be work better than SusP. Finally, we show that for neural data with high absolute magnetization, SusP performs less well than TAP inversion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2010-00277-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "77"
      }
    ], 
    "name": "Dynamics and performance of susceptibility propagation on synthetic data", 
    "pagination": "587-595", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5c656afd67945f374f3044e95a3b2b388f14362f388df14982ebc4c35352ec2d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2010-00277-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019391942"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2010-00277-0", 
      "https://app.dimensions.ai/details/publication/pub.1019391942"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43226_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140/epjb/e2010-00277-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2010-00277-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2010-00277-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2010-00277-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2010-00277-0'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2010-00277-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nfaa32d7ca69243bf8a0ff909882891b6
4 schema:citation sg:pub.10.1038/nature04701
5 https://doi.org/10.1016/j.jphysparis.2009.05.013
6 https://doi.org/10.1073/pnas.0609152103
7 https://doi.org/10.1073/pnas.0805923106
8 https://doi.org/10.1073/pnas.0906705106
9 https://doi.org/10.1088/1751-8113/42/5/055001
10 https://doi.org/10.1093/acprof:oso/9780198570837.001.0001
11 https://doi.org/10.1103/physreve.58.2302
12 https://doi.org/10.1103/physreve.79.051915
13 https://doi.org/10.1103/physrevlett.35.1792
14 https://doi.org/10.1162/089976698300017386
15 https://doi.org/10.1207/s15516709cog0901_7
16 https://doi.org/10.1214/09-aos691
17 https://doi.org/10.1523/jneurosci.1282-06.2006
18 https://doi.org/10.3389/neuro.10.022.2009
19 schema:datePublished 2010-10
20 schema:datePublishedReg 2010-10-01
21 schema:description We study the performance and convergence properties of the susceptibility propagation (SusP) algorithm for solving the Inverse Ising problem. We first study how the temperature parameter (T) in a Sherrington-Kirkpatrick model generating the data influences the performance and convergence of the algorithm. We find that at the high temperature regime (T > 4), the algorithm performs well and its quality is only limited by the quality of the supplied data. In the low temperature regime (T < 4), we find that the algorithm typically does not converge, yielding diverging values for the couplings. However, we show that by stopping the algorithm at the right time before divergence becomes serious, good reconstruction can be achieved down to T≈ 2. We then show that dense connectivity, loopiness of the connectivity, and high absolute magnetization all have deteriorating effects on the performance of the algorithm. When absolute magnetization is high, we show that other methods can be work better than SusP. Finally, we show that for neural data with high absolute magnetization, SusP performs less well than TAP inversion.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N62164b8ffd6644dd8935acaddd08c941
26 Neeb057bc5fec4c04b0793084c4388cad
27 sg:journal.1129956
28 schema:name Dynamics and performance of susceptibility propagation on synthetic data
29 schema:pagination 587-595
30 schema:productId N0552c0cc35fd4707934f9d2e9c28b2e9
31 N8309d932f23f48a1b830d1ca89ad575b
32 Nf6d604f59479441889e3bb391075b546
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019391942
34 https://doi.org/10.1140/epjb/e2010-00277-0
35 schema:sdDatePublished 2019-04-11T10:52
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nd781570083644964bc96995e44699362
38 schema:url http://link.springer.com/10.1140/epjb/e2010-00277-0
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0552c0cc35fd4707934f9d2e9c28b2e9 schema:name readcube_id
43 schema:value 5c656afd67945f374f3044e95a3b2b388f14362f388df14982ebc4c35352ec2d
44 rdf:type schema:PropertyValue
45 N194c8ab352994acbadef731b450d55e7 rdf:first sg:person.01013354466.44
46 rdf:rest rdf:nil
47 N62164b8ffd6644dd8935acaddd08c941 schema:volumeNumber 77
48 rdf:type schema:PublicationVolume
49 N8309d932f23f48a1b830d1ca89ad575b schema:name dimensions_id
50 schema:value pub.1019391942
51 rdf:type schema:PropertyValue
52 Nd781570083644964bc96995e44699362 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Ne299bd25ab3a4cac8106bf86cd7920a6 rdf:first Ned5463dfa0d848b2a71c2f9475e379f4
55 rdf:rest N194c8ab352994acbadef731b450d55e7
56 Ned5463dfa0d848b2a71c2f9475e379f4 schema:affiliation https://www.grid.ac/institutes/grid.411313.5
57 schema:familyName Ollion
58 schema:givenName C.
59 rdf:type schema:Person
60 Neeb057bc5fec4c04b0793084c4388cad schema:issueNumber 4
61 rdf:type schema:PublicationIssue
62 Nf6d604f59479441889e3bb391075b546 schema:name doi
63 schema:value 10.1140/epjb/e2010-00277-0
64 rdf:type schema:PropertyValue
65 Nfaa32d7ca69243bf8a0ff909882891b6 rdf:first sg:person.01104576776.49
66 rdf:rest Ne299bd25ab3a4cac8106bf86cd7920a6
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
71 schema:name Artificial Intelligence and Image Processing
72 rdf:type schema:DefinedTerm
73 sg:journal.1129956 schema:issn 1155-4304
74 1286-4862
75 schema:name The European Physical Journal B
76 rdf:type schema:Periodical
77 sg:person.01013354466.44 schema:affiliation https://www.grid.ac/institutes/grid.450306.4
78 schema:familyName Roudi
79 schema:givenName Y.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013354466.44
81 rdf:type schema:Person
82 sg:person.01104576776.49 schema:affiliation https://www.grid.ac/institutes/grid.411313.5
83 schema:familyName Aurell
84 schema:givenName E.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49
86 rdf:type schema:Person
87 sg:pub.10.1038/nature04701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013920925
88 https://doi.org/10.1038/nature04701
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.jphysparis.2009.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050043408
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1073/pnas.0609152103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043701131
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1073/pnas.0805923106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044743857
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1073/pnas.0906705106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033928853
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1088/1751-8113/42/5/055001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012085114
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1093/acprof:oso/9780198570837.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098740184
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physreve.58.2302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060722691
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physreve.79.051915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012948983
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevlett.35.1792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060779672
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1162/089976698300017386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036428134
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1207/s15516709cog0901_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006217895
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1214/09-aos691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064390879
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1523/jneurosci.1282-06.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024730447
115 rdf:type schema:CreativeWork
116 https://doi.org/10.3389/neuro.10.022.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016445020
117 rdf:type schema:CreativeWork
118 https://www.grid.ac/institutes/grid.411313.5 schema:alternateName AlbaNova
119 schema:name ACCESS Linnaeus Center KTH-Royal Institute of Technology, 100 44, Stockholm, Sweden
120 Department of Computational Biology, AlbaNova University Centre, 106 91, Stockholm, Sweden
121 Department of Informatics and Computer Science, Aalto University, FI-02015, Espoo, Finland
122 rdf:type schema:Organization
123 https://www.grid.ac/institutes/grid.450306.4 schema:alternateName Nordic Institute for Theoretical Physics
124 schema:name NORDITA, Roslagstullsbacken 23, 10691, Stockholm, Sweden
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...