Ontology type: schema:ScholarlyArticle
2008-06
AUTHORSS. Soriano, C. Dufour, K. Dumesnil, Ph. Mangin
ABSTRACTBelow its ordering temperature (TN = 90 K), bulk bcc Eu has a helical magnetic state with propagation vectors along the three equivalent 〈100〉 directions. In contrast, epitaxial (110)Eu films exhibit a unique magnetic ordering: the domain with a magnetic helix propagating along the in-plane [001] direction vanishes on cooling, at the expense of other domains with helices propagating along [100] and [010]. This paper is devoted to the study of the stability of the magnetic domains in an external magnetic field using neutron scattering experiments and macroscopic magnetization measurements. The helix propagating along the [001] direction can be restored by the application of an external field along this direction. On the contrary, when a magnetic field is applied along an intermediate direction, specifically [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar 1 $$\end{document}10], the domain with a helix propagating along [001] is suppressed. Both effects depend on the film thickness. They are explained if one considers that, because of the low magnetic anisotropy of Eu, a helix with a propagation vector parallel to (or close to) the applied magnetic field is energetically more favourable than cycloidal structures with unchanged propagation vectors. Finally, the amplitudes of the propagation vectors and their directions (that are modified in films compared to bulk) do not vary under magnetic field. More... »
PAGES469-478
http://scigraph.springernature.com/pub.10.1140/epjb/e2008-00255-1
DOIhttp://dx.doi.org/10.1140/epjb/e2008-00255-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1013872209
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Instituto de F\u00edsica, Universidade Federal do Rio de Janeiro, 21945-970, Rio de Janeiro-RJ, Brazil",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Laboratoire de Physique des Mat\u00e9riaux, Universit\u00e9 H. Poincar\u00e9-Nancy I, BP 239, 54506, Vandoeuvre-les-Nancy Cedex, France",
"Instituto de F\u00edsica, Universidade Federal do Rio de Janeiro, 21945-970, Rio de Janeiro-RJ, Brazil"
],
"type": "Organization"
},
"familyName": "Soriano",
"givenName": "S.",
"id": "sg:person.01322250003.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322250003.63"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de Physique des Mat\u00e9riaux, Universit\u00e9 H. Poincar\u00e9-Nancy I, BP 239, 54506, Vandoeuvre-les-Nancy Cedex, France",
"id": "http://www.grid.ac/institutes/grid.29172.3f",
"name": [
"Laboratoire de Physique des Mat\u00e9riaux, Universit\u00e9 H. Poincar\u00e9-Nancy I, BP 239, 54506, Vandoeuvre-les-Nancy Cedex, France"
],
"type": "Organization"
},
"familyName": "Dufour",
"givenName": "C.",
"id": "sg:person.012315027175.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012315027175.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de Physique des Mat\u00e9riaux, Universit\u00e9 H. Poincar\u00e9-Nancy I, BP 239, 54506, Vandoeuvre-les-Nancy Cedex, France",
"id": "http://www.grid.ac/institutes/grid.29172.3f",
"name": [
"Laboratoire de Physique des Mat\u00e9riaux, Universit\u00e9 H. Poincar\u00e9-Nancy I, BP 239, 54506, Vandoeuvre-les-Nancy Cedex, France"
],
"type": "Organization"
},
"familyName": "Dumesnil",
"givenName": "K.",
"id": "sg:person.011517446575.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517446575.66"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "LLB, CEA Saclay, 91191, Gif-sur-Yvette, France",
"id": "http://www.grid.ac/institutes/grid.457334.2",
"name": [
"LLB, CEA Saclay, 91191, Gif-sur-Yvette, France"
],
"type": "Organization"
},
"familyName": "Mangin",
"givenName": "Ph.",
"id": "sg:person.011706252162.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011706252162.43"
],
"type": "Person"
}
],
"datePublished": "2008-06",
"datePublishedReg": "2008-06-01",
"description": "Below its ordering temperature (TN = 90 K), bulk bcc Eu has a helical magnetic state with propagation vectors along the three equivalent \u3008100\u3009 directions. In contrast, epitaxial (110)Eu films exhibit a unique magnetic ordering: the domain with a magnetic helix propagating along the in-plane [001] direction vanishes on cooling, at the expense of other domains with helices propagating along [100] and [010]. This paper is devoted to the study of the stability of the magnetic domains in an external magnetic field using neutron scattering experiments and macroscopic magnetization measurements. The helix propagating along the [001] direction can be restored by the application of an external field along this direction. On the contrary, when a magnetic field is applied along an intermediate direction, specifically [\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\n\\bar 1\n$$\\end{document}10], the domain with a helix propagating along [001] is suppressed. Both effects depend on the film thickness. They are explained if one considers that, because of the low magnetic anisotropy of Eu, a helix with a propagation vector parallel to (or close to) the applied magnetic field is energetically more favourable than cycloidal structures with unchanged propagation vectors. Finally, the amplitudes of the propagation vectors and their directions (that are modified in films compared to bulk) do not vary under magnetic field.",
"genre": "article",
"id": "sg:pub.10.1140/epjb/e2008-00255-1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1129956",
"issn": [
"1155-4304",
"1286-4862"
],
"name": "The European Physical Journal B",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "63"
}
],
"keywords": [
"propagation vector",
"magnetic field",
"magnetic ordering",
"propagation vector parallel",
"helical magnetic state",
"macroscopic magnetization measurements",
"applied magnetic field",
"external magnetic field",
"low magnetic anisotropy",
"ordering temperature",
"magnetic state",
"cycloidal structure",
"magnetic helix",
"magnetic anisotropy",
"in-plane directions",
"magnetization measurements",
"external field",
"Eu films",
"magnetic domains",
"vector parallel",
"film thickness",
"ordering",
"field",
"films",
"neutrons",
"vector",
"anisotropy",
"direction",
"measurements",
"domain",
"amplitude",
"intermediate directions",
"thickness",
"temperature",
"state",
"applications",
"stability",
"structure",
"experiments",
"parallel",
"helix",
"EU",
"expense",
"effect",
"contrast",
"contrary",
"paper",
"study"
],
"name": "Magnetic ordering in (110) Eu films in an applied magnetic field",
"pagination": "469-478",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1013872209"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1140/epjb/e2008-00255-1"
]
}
],
"sameAs": [
"https://doi.org/10.1140/epjb/e2008-00255-1",
"https://app.dimensions.ai/details/publication/pub.1013872209"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_468.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1140/epjb/e2008-00255-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2008-00255-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2008-00255-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2008-00255-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2008-00255-1'
This table displays all metadata directly associated to this object as RDF triples.
134 TRIPLES
21 PREDICATES
74 URIs
66 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1140/epjb/e2008-00255-1 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:02 |
3 | ″ | schema:author | Nd3aac8ec9f584c46aeea6fa9dcb3b253 |
4 | ″ | schema:datePublished | 2008-06 |
5 | ″ | schema:datePublishedReg | 2008-06-01 |
6 | ″ | schema:description | Below its ordering temperature (TN = 90 K), bulk bcc Eu has a helical magnetic state with propagation vectors along the three equivalent 〈100〉 directions. In contrast, epitaxial (110)Eu films exhibit a unique magnetic ordering: the domain with a magnetic helix propagating along the in-plane [001] direction vanishes on cooling, at the expense of other domains with helices propagating along [100] and [010]. This paper is devoted to the study of the stability of the magnetic domains in an external magnetic field using neutron scattering experiments and macroscopic magnetization measurements. The helix propagating along the [001] direction can be restored by the application of an external field along this direction. On the contrary, when a magnetic field is applied along an intermediate direction, specifically [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar 1 $$\end{document}10], the domain with a helix propagating along [001] is suppressed. Both effects depend on the film thickness. They are explained if one considers that, because of the low magnetic anisotropy of Eu, a helix with a propagation vector parallel to (or close to) the applied magnetic field is energetically more favourable than cycloidal structures with unchanged propagation vectors. Finally, the amplitudes of the propagation vectors and their directions (that are modified in films compared to bulk) do not vary under magnetic field. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N9bae8ac56c1b4466a5097b4a923bd570 |
11 | ″ | ″ | Nd6f621d811cd40ecb0b67ce9547f0934 |
12 | ″ | ″ | sg:journal.1129956 |
13 | ″ | schema:keywords | EU |
14 | ″ | ″ | Eu films |
15 | ″ | ″ | amplitude |
16 | ″ | ″ | anisotropy |
17 | ″ | ″ | applications |
18 | ″ | ″ | applied magnetic field |
19 | ″ | ″ | contrary |
20 | ″ | ″ | contrast |
21 | ″ | ″ | cycloidal structure |
22 | ″ | ″ | direction |
23 | ″ | ″ | domain |
24 | ″ | ″ | effect |
25 | ″ | ″ | expense |
26 | ″ | ″ | experiments |
27 | ″ | ″ | external field |
28 | ″ | ″ | external magnetic field |
29 | ″ | ″ | field |
30 | ″ | ″ | film thickness |
31 | ″ | ″ | films |
32 | ″ | ″ | helical magnetic state |
33 | ″ | ″ | helix |
34 | ″ | ″ | in-plane directions |
35 | ″ | ″ | intermediate directions |
36 | ″ | ″ | low magnetic anisotropy |
37 | ″ | ″ | macroscopic magnetization measurements |
38 | ″ | ″ | magnetic anisotropy |
39 | ″ | ″ | magnetic domains |
40 | ″ | ″ | magnetic field |
41 | ″ | ″ | magnetic helix |
42 | ″ | ″ | magnetic ordering |
43 | ″ | ″ | magnetic state |
44 | ″ | ″ | magnetization measurements |
45 | ″ | ″ | measurements |
46 | ″ | ″ | neutrons |
47 | ″ | ″ | ordering |
48 | ″ | ″ | ordering temperature |
49 | ″ | ″ | paper |
50 | ″ | ″ | parallel |
51 | ″ | ″ | propagation vector |
52 | ″ | ″ | propagation vector parallel |
53 | ″ | ″ | stability |
54 | ″ | ″ | state |
55 | ″ | ″ | structure |
56 | ″ | ″ | study |
57 | ″ | ″ | temperature |
58 | ″ | ″ | thickness |
59 | ″ | ″ | vector |
60 | ″ | ″ | vector parallel |
61 | ″ | schema:name | Magnetic ordering in (110) Eu films in an applied magnetic field |
62 | ″ | schema:pagination | 469-478 |
63 | ″ | schema:productId | N7e02ad53d980434fb1794c6ac9b9ec70 |
64 | ″ | ″ | Ne9bae38268d84e63946818562a37cecd |
65 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013872209 |
66 | ″ | ″ | https://doi.org/10.1140/epjb/e2008-00255-1 |
67 | ″ | schema:sdDatePublished | 2022-05-20T07:25 |
68 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
69 | ″ | schema:sdPublisher | N774add6fb1674e558601d1933848ec8c |
70 | ″ | schema:url | https://doi.org/10.1140/epjb/e2008-00255-1 |
71 | ″ | sgo:license | sg:explorer/license/ |
72 | ″ | sgo:sdDataset | articles |
73 | ″ | rdf:type | schema:ScholarlyArticle |
74 | N774add6fb1674e558601d1933848ec8c | schema:name | Springer Nature - SN SciGraph project |
75 | ″ | rdf:type | schema:Organization |
76 | N7e02ad53d980434fb1794c6ac9b9ec70 | schema:name | doi |
77 | ″ | schema:value | 10.1140/epjb/e2008-00255-1 |
78 | ″ | rdf:type | schema:PropertyValue |
79 | N8f9e27d9e12c4d2e895bee471bd03c95 | rdf:first | sg:person.012315027175.43 |
80 | ″ | rdf:rest | Naa6e9f0810294b7488c003c13262e954 |
81 | N9bae8ac56c1b4466a5097b4a923bd570 | schema:volumeNumber | 63 |
82 | ″ | rdf:type | schema:PublicationVolume |
83 | Naa6e9f0810294b7488c003c13262e954 | rdf:first | sg:person.011517446575.66 |
84 | ″ | rdf:rest | Nbedd067486124598929cfaf16338d7dd |
85 | Nbedd067486124598929cfaf16338d7dd | rdf:first | sg:person.011706252162.43 |
86 | ″ | rdf:rest | rdf:nil |
87 | Nd3aac8ec9f584c46aeea6fa9dcb3b253 | rdf:first | sg:person.01322250003.63 |
88 | ″ | rdf:rest | N8f9e27d9e12c4d2e895bee471bd03c95 |
89 | Nd6f621d811cd40ecb0b67ce9547f0934 | schema:issueNumber | 4 |
90 | ″ | rdf:type | schema:PublicationIssue |
91 | Ne9bae38268d84e63946818562a37cecd | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1013872209 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Mathematical Sciences |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Physical Sciences |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | sg:journal.1129956 | schema:issn | 1155-4304 |
101 | ″ | ″ | 1286-4862 |
102 | ″ | schema:name | The European Physical Journal B |
103 | ″ | schema:publisher | Springer Nature |
104 | ″ | rdf:type | schema:Periodical |
105 | sg:person.011517446575.66 | schema:affiliation | grid-institutes:grid.29172.3f |
106 | ″ | schema:familyName | Dumesnil |
107 | ″ | schema:givenName | K. |
108 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517446575.66 |
109 | ″ | rdf:type | schema:Person |
110 | sg:person.011706252162.43 | schema:affiliation | grid-institutes:grid.457334.2 |
111 | ″ | schema:familyName | Mangin |
112 | ″ | schema:givenName | Ph. |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011706252162.43 |
114 | ″ | rdf:type | schema:Person |
115 | sg:person.012315027175.43 | schema:affiliation | grid-institutes:grid.29172.3f |
116 | ″ | schema:familyName | Dufour |
117 | ″ | schema:givenName | C. |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012315027175.43 |
119 | ″ | rdf:type | schema:Person |
120 | sg:person.01322250003.63 | schema:affiliation | grid-institutes:None |
121 | ″ | schema:familyName | Soriano |
122 | ″ | schema:givenName | S. |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322250003.63 |
124 | ″ | rdf:type | schema:Person |
125 | grid-institutes:None | schema:alternateName | Instituto de Física, Universidade Federal do Rio de Janeiro, 21945-970, Rio de Janeiro-RJ, Brazil |
126 | ″ | schema:name | Instituto de Física, Universidade Federal do Rio de Janeiro, 21945-970, Rio de Janeiro-RJ, Brazil |
127 | ″ | ″ | Laboratoire de Physique des Matériaux, Université H. Poincaré-Nancy I, BP 239, 54506, Vandoeuvre-les-Nancy Cedex, France |
128 | ″ | rdf:type | schema:Organization |
129 | grid-institutes:grid.29172.3f | schema:alternateName | Laboratoire de Physique des Matériaux, Université H. Poincaré-Nancy I, BP 239, 54506, Vandoeuvre-les-Nancy Cedex, France |
130 | ″ | schema:name | Laboratoire de Physique des Matériaux, Université H. Poincaré-Nancy I, BP 239, 54506, Vandoeuvre-les-Nancy Cedex, France |
131 | ″ | rdf:type | schema:Organization |
132 | grid-institutes:grid.457334.2 | schema:alternateName | LLB, CEA Saclay, 91191, Gif-sur-Yvette, France |
133 | ″ | schema:name | LLB, CEA Saclay, 91191, Gif-sur-Yvette, France |
134 | ″ | rdf:type | schema:Organization |