Heat conduction in a two-dimensional Ising model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-03

AUTHORS

M. Casartelli, N. Macellari, A. Vezzani

ABSTRACT

A cylindrical Ising model between thermostats is used to explore the heat conduction for any temperature interval. The standard Q2R and Creutz dynamics, previously used by Saito, Takesue and Miyashita, fail below the critical temperature, limiting the analysis to high temperatures intervals. We introduce improved dynamics by removing limitations due to the chessboard-like refresh, and by supplementing the Q2R rule with Kadanoff-Swift moves. These new dynamics not only prove highly efficient in recovering old results in their domains of validity, but also allow exploration of steady heat transport between two arbitrary temperatures, i.e. very far from equilibrium. From an ansatz avoiding references to quasi equilibrium or to local temperature, and from comparison with numerical simulations, we can consistently define a generalized diffusivity. Its dependence on the energy density may be evaluated without any recourse to the Green-Kubo formula. More... »

PAGES

149-156

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2007-00096-4

DOI

http://dx.doi.org/10.1140/epjb/e2007-00096-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004683372


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Torino", 
          "id": "https://www.grid.ac/institutes/grid.470222.1", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Parma, Viale Usberti 7/A (Parco Area Scienze), 43100, Parma, Italy", 
            "CNR-INFM (Parma), Viale Usberti 7/A (Parco Area Scienze), 43100, Parma, Italy", 
            "INFN, gruppo collegato di Parma, Viale Usberti 7/A (Parco Area Scienze), 43100, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casartelli", 
        "givenName": "M.", 
        "id": "sg:person.015225266142.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015225266142.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Parma, Viale Usberti 7/A (Parco Area Scienze), 43100, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Macellari", 
        "givenName": "N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Parma, Viale Usberti 7/A (Parco Area Scienze), 43100, Parma, Italy", 
            "CNR-INFM (Parma), Viale Usberti 7/A (Parco Area Scienze), 43100, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vezzani", 
        "givenName": "A.", 
        "id": "sg:person.01160553163.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160553163.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-2789(84)90253-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017085534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(84)90253-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017085534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(02)00558-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021209444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2005/02/p02008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023631179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.054412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036221725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.054412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036221725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/37/49/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046928587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.2783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050119861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.2783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050119861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/21/15/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059069619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.165.310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060437306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.165.310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060437306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.4356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.4356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.140402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060615338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.140402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060615338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.2404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.2404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719715"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-03", 
    "datePublishedReg": "2007-03-01", 
    "description": "A cylindrical Ising model between thermostats is used to explore the heat conduction for any temperature interval. The standard Q2R and Creutz dynamics, previously used by Saito, Takesue and Miyashita, fail below the critical temperature, limiting the analysis to high temperatures intervals. We introduce improved dynamics by removing limitations due to the chessboard-like refresh, and by supplementing the Q2R rule with Kadanoff-Swift moves. These new dynamics not only prove highly efficient in recovering old results in their domains of validity, but also allow exploration of steady heat transport between two arbitrary temperatures, i.e. very far from equilibrium. From an ansatz avoiding references to quasi equilibrium or to local temperature, and from comparison with numerical simulations, we can consistently define a generalized diffusivity. Its dependence on the energy density may be evaluated without any recourse to the Green-Kubo formula.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2007-00096-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "name": "Heat conduction in a two-dimensional Ising model", 
    "pagination": "149-156", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1650f527d007f57d04297ac65b5a8b3ba3d162750c5e1d77eb97322287b59540"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2007-00096-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004683372"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2007-00096-4", 
      "https://app.dimensions.ai/details/publication/pub.1004683372"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71683_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140/epjb/e2007-00096-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2007-00096-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2007-00096-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2007-00096-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2007-00096-4'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2007-00096-4 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Neb870c3ae7814b8cb1b97c4f5827d0fe
4 schema:citation https://doi.org/10.1016/0167-2789(84)90253-7
5 https://doi.org/10.1016/s0370-1573(02)00558-6
6 https://doi.org/10.1088/0305-4470/21/15/018
7 https://doi.org/10.1088/0305-4470/37/49/001
8 https://doi.org/10.1088/1742-5468/2005/02/p02008
9 https://doi.org/10.1103/physrev.165.310
10 https://doi.org/10.1103/physrevb.49.4356
11 https://doi.org/10.1103/physrevb.64.054412
12 https://doi.org/10.1103/physrevb.72.140402
13 https://doi.org/10.1103/physreve.54.2404
14 https://doi.org/10.1103/physreve.59.2783
15 schema:datePublished 2007-03
16 schema:datePublishedReg 2007-03-01
17 schema:description A cylindrical Ising model between thermostats is used to explore the heat conduction for any temperature interval. The standard Q2R and Creutz dynamics, previously used by Saito, Takesue and Miyashita, fail below the critical temperature, limiting the analysis to high temperatures intervals. We introduce improved dynamics by removing limitations due to the chessboard-like refresh, and by supplementing the Q2R rule with Kadanoff-Swift moves. These new dynamics not only prove highly efficient in recovering old results in their domains of validity, but also allow exploration of steady heat transport between two arbitrary temperatures, i.e. very far from equilibrium. From an ansatz avoiding references to quasi equilibrium or to local temperature, and from comparison with numerical simulations, we can consistently define a generalized diffusivity. Its dependence on the energy density may be evaluated without any recourse to the Green-Kubo formula.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N546a05be264d4136a3814ec29efb808a
22 Nd5e40e3f063547e98a563d3aa80655ed
23 sg:journal.1129956
24 schema:name Heat conduction in a two-dimensional Ising model
25 schema:pagination 149-156
26 schema:productId N40b3da729ad944c2853669b4e8dad45f
27 N4a7959a6c4e04c08a8527786134cea7f
28 N8c46654561d74018b4fc7a7e961eb6fb
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004683372
30 https://doi.org/10.1140/epjb/e2007-00096-4
31 schema:sdDatePublished 2019-04-11T12:58
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N63ac702c30bd4d8abf86ae9799ea1898
34 schema:url http://link.springer.com/10.1140/epjb/e2007-00096-4
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N08f5da9ac44a4c9bb57a01863c256706 rdf:first N1db4e50c4d884a36a46c041d22d2a89f
39 rdf:rest N9eba900c9cb44080be0e2155d6e08411
40 N1db4e50c4d884a36a46c041d22d2a89f schema:affiliation https://www.grid.ac/institutes/grid.10383.39
41 schema:familyName Macellari
42 schema:givenName N.
43 rdf:type schema:Person
44 N40b3da729ad944c2853669b4e8dad45f schema:name readcube_id
45 schema:value 1650f527d007f57d04297ac65b5a8b3ba3d162750c5e1d77eb97322287b59540
46 rdf:type schema:PropertyValue
47 N4a7959a6c4e04c08a8527786134cea7f schema:name dimensions_id
48 schema:value pub.1004683372
49 rdf:type schema:PropertyValue
50 N546a05be264d4136a3814ec29efb808a schema:issueNumber 2
51 rdf:type schema:PublicationIssue
52 N63ac702c30bd4d8abf86ae9799ea1898 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N8c46654561d74018b4fc7a7e961eb6fb schema:name doi
55 schema:value 10.1140/epjb/e2007-00096-4
56 rdf:type schema:PropertyValue
57 N9eba900c9cb44080be0e2155d6e08411 rdf:first sg:person.01160553163.87
58 rdf:rest rdf:nil
59 Nd5e40e3f063547e98a563d3aa80655ed schema:volumeNumber 56
60 rdf:type schema:PublicationVolume
61 Neb870c3ae7814b8cb1b97c4f5827d0fe rdf:first sg:person.015225266142.12
62 rdf:rest N08f5da9ac44a4c9bb57a01863c256706
63 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
64 schema:name Engineering
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
67 schema:name Interdisciplinary Engineering
68 rdf:type schema:DefinedTerm
69 sg:journal.1129956 schema:issn 1155-4304
70 1286-4862
71 schema:name The European Physical Journal B
72 rdf:type schema:Periodical
73 sg:person.01160553163.87 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
74 schema:familyName Vezzani
75 schema:givenName A.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160553163.87
77 rdf:type schema:Person
78 sg:person.015225266142.12 schema:affiliation https://www.grid.ac/institutes/grid.470222.1
79 schema:familyName Casartelli
80 schema:givenName M.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015225266142.12
82 rdf:type schema:Person
83 https://doi.org/10.1016/0167-2789(84)90253-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017085534
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/s0370-1573(02)00558-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021209444
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1088/0305-4470/21/15/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059069619
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1088/0305-4470/37/49/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046928587
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1088/1742-5468/2005/02/p02008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023631179
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physrev.165.310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060437306
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevb.49.4356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570881
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevb.64.054412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036221725
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevb.72.140402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060615338
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physreve.54.2404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060719715
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physreve.59.2783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050119861
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.10383.39 schema:alternateName University of Parma
106 schema:name CNR-INFM (Parma), Viale Usberti 7/A (Parco Area Scienze), 43100, Parma, Italy
107 Dipartimento di Fisica, Università di Parma, Viale Usberti 7/A (Parco Area Scienze), 43100, Parma, Italy
108 rdf:type schema:Organization
109 https://www.grid.ac/institutes/grid.470222.1 schema:alternateName INFN Sezione di Torino
110 schema:name CNR-INFM (Parma), Viale Usberti 7/A (Parco Area Scienze), 43100, Parma, Italy
111 Dipartimento di Fisica, Università di Parma, Viale Usberti 7/A (Parco Area Scienze), 43100, Parma, Italy
112 INFN, gruppo collegato di Parma, Viale Usberti 7/A (Parco Area Scienze), 43100, Parma, Italy
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...