Dynamical invariants in the deterministic fixed-energy sandpile View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-07

AUTHORS

M. Casartelli, L. Dall'Asta, A. Vezzani, P. Vivo

ABSTRACT

The non-ergodic behavior of the deterministic Fixed Energy Sandpile (DFES), with Bak-Tang-Wiesenfeld (BTW) rule, is explained by the complete characterization of a class of dynamical invariants (or toppling invariants). The link between such constants of motion and the discrete Laplacians properties on graphs is algebraically and numerically clarified. In particular, it is possible to build up an explicit algorithm determining the complete set of independent toppling invariants. The partition of the configuration space into dynamically invariant sets, and the further refinement of such a partition into basins of attraction for orbits, are also studied. The total number of invariant sets equals the graphs complexity. In the case of two dimensional lattices, it is possible to estimate a very regular exponential growth of this number vs. the size. Looking at other features, the toppling invariants exhibit a highly irregular behavior. The usual constraint on the energy positiveness introduces a transition in the frozen phase. In correspondence to this transition, a dynamical crossover related to the halting times is observed. The analysis of the configuration space shows that the DFES has a different structure with respect to dissipative BTW and stochastic sandpiles models, supporting the conjecture that it lies in a distinct class of universality. More... »

PAGES

91-105

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2006-00262-2

DOI

http://dx.doi.org/10.1140/epjb/e2006-00262-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033709716


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Dipartimento di Fisica and CNR - INFM, Universit\u00e0 di Parma, Parco Area Scienze 7a, 43100, Parma, Italy", 
            "INFN, gruppo collegato di, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casartelli", 
        "givenName": "M.", 
        "id": "sg:person.015225266142.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015225266142.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "Laboratoire de Physique Th\u00e9orique, Batiment 210, Universit\u00e9 de Paris-Sud, 91405, Orsay Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dall'Asta", 
        "givenName": "L.", 
        "id": "sg:person.01207500031.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207500031.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Dipartimento di Fisica and CNR - INFM, Universit\u00e0 di Parma, Parco Area Scienze 7a, 43100, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vezzani", 
        "givenName": "A.", 
        "id": "sg:person.01160553163.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160553163.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brunel University London", 
          "id": "https://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, UB8 3PH, Middlesex, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vivo", 
        "givenName": "P.", 
        "id": "sg:person.01305472542.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305472542.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.64.056104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012411535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.056104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012411535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.066130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015036289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.066130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015036289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.5095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017155295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.57.5095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017155295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.18471481202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024496826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/28/4/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025415557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027419192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027419192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2003-00561-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032851076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.4564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043619410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.4564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043619410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.058003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047960035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.058003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047960035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/35/21/301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059077830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.38.364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060478114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.38.364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060478114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.7002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.7002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.2941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.2941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217979204027748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062934085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/27/2/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064230020"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-07", 
    "datePublishedReg": "2006-07-01", 
    "description": "The non-ergodic behavior of the deterministic Fixed Energy Sandpile (DFES), with Bak-Tang-Wiesenfeld (BTW) rule, is explained by the complete characterization of a class of dynamical invariants (or toppling invariants). The link between such constants of motion and the discrete Laplacians properties on graphs is algebraically and numerically clarified. In particular, it is possible to build up an explicit algorithm determining the complete set of independent toppling invariants. The partition of the configuration space into dynamically invariant sets, and the further refinement of such a partition into basins of attraction for orbits, are also studied. The total number of invariant sets equals the graphs complexity. In the case of two dimensional lattices, it is possible to estimate a very regular exponential growth of this number vs. the size. Looking at other features, the toppling invariants exhibit a highly irregular behavior. The usual constraint on the energy positiveness introduces a transition in the frozen phase. In correspondence to this transition, a dynamical crossover related to the halting times is observed. The analysis of the configuration space shows that the DFES has a different structure with respect to dissipative BTW and stochastic sandpiles models, supporting the conjecture that it lies in a distinct class of universality.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2006-00262-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Dynamical invariants in the deterministic fixed-energy sandpile", 
    "pagination": "91-105", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a0951b24db4f4ccec93e6962c6426cbad3b919aac0fa013b68fa84bc671030ca"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2006-00262-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033709716"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2006-00262-2", 
      "https://app.dimensions.ai/details/publication/pub.1033709716"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140/epjb/e2006-00262-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2006-00262-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2006-00262-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2006-00262-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2006-00262-2'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2006-00262-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N52598ca12f9841fd89e629569560ff4a
4 schema:citation https://doi.org/10.1002/andp.18471481202
5 https://doi.org/10.1088/0305-4470/28/4/009
6 https://doi.org/10.1088/0305-4470/35/21/301
7 https://doi.org/10.1103/physreva.38.364
8 https://doi.org/10.1103/physreva.45.7002
9 https://doi.org/10.1103/physreve.57.5095
10 https://doi.org/10.1103/physreve.62.4564
11 https://doi.org/10.1103/physreve.64.056104
12 https://doi.org/10.1103/physreve.64.066130
13 https://doi.org/10.1103/physrevlett.76.2941
14 https://doi.org/10.1103/physrevlett.77.111
15 https://doi.org/10.1103/physrevlett.96.058003
16 https://doi.org/10.1142/s0217979204027748
17 https://doi.org/10.1209/0295-5075/27/2/004
18 https://doi.org/10.1209/epl/i2003-00561-8
19 schema:datePublished 2006-07
20 schema:datePublishedReg 2006-07-01
21 schema:description The non-ergodic behavior of the deterministic Fixed Energy Sandpile (DFES), with Bak-Tang-Wiesenfeld (BTW) rule, is explained by the complete characterization of a class of dynamical invariants (or toppling invariants). The link between such constants of motion and the discrete Laplacians properties on graphs is algebraically and numerically clarified. In particular, it is possible to build up an explicit algorithm determining the complete set of independent toppling invariants. The partition of the configuration space into dynamically invariant sets, and the further refinement of such a partition into basins of attraction for orbits, are also studied. The total number of invariant sets equals the graphs complexity. In the case of two dimensional lattices, it is possible to estimate a very regular exponential growth of this number vs. the size. Looking at other features, the toppling invariants exhibit a highly irregular behavior. The usual constraint on the energy positiveness introduces a transition in the frozen phase. In correspondence to this transition, a dynamical crossover related to the halting times is observed. The analysis of the configuration space shows that the DFES has a different structure with respect to dissipative BTW and stochastic sandpiles models, supporting the conjecture that it lies in a distinct class of universality.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N27c55724d52046c8bb302465b1b0768d
26 N4fc160077c774de39c81ab01a61ddd24
27 sg:journal.1129956
28 schema:name Dynamical invariants in the deterministic fixed-energy sandpile
29 schema:pagination 91-105
30 schema:productId Naa152e128141470e870f1bc8c6bc9ce1
31 Nf72f2403a4c64cc28a5c90796eb56542
32 Nf8968f6c21c84966961e3db5b443d13d
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033709716
34 https://doi.org/10.1140/epjb/e2006-00262-2
35 schema:sdDatePublished 2019-04-11T01:57
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N0d6809fdb2e84679a325a90753e9ae22
38 schema:url http://link.springer.com/10.1140/epjb/e2006-00262-2
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0d6809fdb2e84679a325a90753e9ae22 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N27c55724d52046c8bb302465b1b0768d schema:issueNumber 1
45 rdf:type schema:PublicationIssue
46 N2ab86236966e4ef7ac87c148acbb1179 rdf:first sg:person.01160553163.87
47 rdf:rest N309c8e92eab6426e87490843eacde769
48 N309c8e92eab6426e87490843eacde769 rdf:first sg:person.01305472542.50
49 rdf:rest rdf:nil
50 N4b8408b3d06942d5b57fe95756af976e rdf:first sg:person.01207500031.27
51 rdf:rest N2ab86236966e4ef7ac87c148acbb1179
52 N4fc160077c774de39c81ab01a61ddd24 schema:volumeNumber 52
53 rdf:type schema:PublicationVolume
54 N52598ca12f9841fd89e629569560ff4a rdf:first sg:person.015225266142.12
55 rdf:rest N4b8408b3d06942d5b57fe95756af976e
56 Naa152e128141470e870f1bc8c6bc9ce1 schema:name readcube_id
57 schema:value a0951b24db4f4ccec93e6962c6426cbad3b919aac0fa013b68fa84bc671030ca
58 rdf:type schema:PropertyValue
59 Nf72f2403a4c64cc28a5c90796eb56542 schema:name dimensions_id
60 schema:value pub.1033709716
61 rdf:type schema:PropertyValue
62 Nf8968f6c21c84966961e3db5b443d13d schema:name doi
63 schema:value 10.1140/epjb/e2006-00262-2
64 rdf:type schema:PropertyValue
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1129956 schema:issn 1155-4304
72 1286-4862
73 schema:name The European Physical Journal B
74 rdf:type schema:Periodical
75 sg:person.01160553163.87 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
76 schema:familyName Vezzani
77 schema:givenName A.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160553163.87
79 rdf:type schema:Person
80 sg:person.01207500031.27 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
81 schema:familyName Dall'Asta
82 schema:givenName L.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207500031.27
84 rdf:type schema:Person
85 sg:person.01305472542.50 schema:affiliation https://www.grid.ac/institutes/grid.7728.a
86 schema:familyName Vivo
87 schema:givenName P.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305472542.50
89 rdf:type schema:Person
90 sg:person.015225266142.12 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
91 schema:familyName Casartelli
92 schema:givenName M.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015225266142.12
94 rdf:type schema:Person
95 https://doi.org/10.1002/andp.18471481202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024496826
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1088/0305-4470/28/4/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415557
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1088/0305-4470/35/21/301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059077830
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physreva.38.364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060478114
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physreva.45.7002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060485464
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physreve.57.5095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017155295
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physreve.62.4564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043619410
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physreve.64.056104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012411535
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physreve.64.066130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015036289
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.76.2941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812965
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.77.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027419192
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.96.058003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047960035
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1142/s0217979204027748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062934085
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1209/0295-5075/27/2/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230020
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1209/epl/i2003-00561-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032851076
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.10383.39 schema:alternateName University of Parma
126 schema:name Dipartimento di Fisica and CNR - INFM, Università di Parma, Parco Area Scienze 7a, 43100, Parma, Italy
127 INFN, gruppo collegato di, Parma, Italy
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.5842.b schema:alternateName University of Paris-Sud
130 schema:name Laboratoire de Physique Théorique, Batiment 210, Université de Paris-Sud, 91405, Orsay Cedex, France
131 rdf:type schema:Organization
132 https://www.grid.ac/institutes/grid.7728.a schema:alternateName Brunel University London
133 schema:name School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, UB8 3PH, Middlesex, UK
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...