Pressure dependence of the Shubnikov-de Haas oscillation spectrum of -(BEDT-TTF)4(NH4)[ Cr(C2 O4)3] .DMF View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-05

AUTHORS

D. Vignolles, V. N. Laukhin, A. Audouard, M. Nardone, T. G. Prokhorova, E. B. Yagubskii, E. Canadell

ABSTRACT

The Shubnikov-de Haas (SdH) oscillation spectra of the -(BEDT-TTF)4(NH4)[ Cr(C2O4)3] .DMF organic metal have been studied in pulsed magnetic fields of up to either 36 T at ambient pressure or 50 T under hydrostatic pressures of up to 1 GPa. The ambient pressure SdH oscillation spectra can be accounted for by up to six fundamental frequencies which points to a rather complex Fermi surface (FS). A noticeable pressure-induced modification of the FS topology is evidenced since the number of frequencies observed in the spectra progressively decreases as the pressure increases. Above 0.8 GPa, only three compensated orbits are observed, as it is the case for several other isostructural salts of the same family at ambient pressure. Contrary to other organic metals, of which the FS can be regarded as a network of orbits, no frequency combinations are observed for the studied salt, likely due to high magnetic breakdown gap values or (and) high disorder level evidenced by Dingle temperatures as large as ≃7 K. More... »

PAGES

53-60

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2006-00199-4

DOI

http://dx.doi.org/10.1140/epjb/e2006-00199-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018554528


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paul Sabatier University", 
          "id": "https://www.grid.ac/institutes/grid.15781.3a", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Puls\u00e9s (UMR 5147: Unit\u00e9 Mixte de Recherche CNRS - Universit\u00e9 Paul Sabatier, INSA de Toulouse.) , 143 avenue de Rangueil, 31400, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vignolles", 
        "givenName": "D.", 
        "id": "sg:person.015624012501.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015624012501.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.7080.f", 
          "name": [
            "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats (ICREA), 08010, Barcelona, Spain", 
            "Institut de Ci\u00e8ncia de Materials de Barcelona (ICMAB - CSIC), Campus UAB, 08193 Bellaterra, Catalunya, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laukhin", 
        "givenName": "V. N.", 
        "id": "sg:person.014074240772.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014074240772.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paul Sabatier University", 
          "id": "https://www.grid.ac/institutes/grid.15781.3a", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Puls\u00e9s (UMR 5147: Unit\u00e9 Mixte de Recherche CNRS - Universit\u00e9 Paul Sabatier, INSA de Toulouse.) , 143 avenue de Rangueil, 31400, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Audouard", 
        "givenName": "A.", 
        "id": "sg:person.01133752157.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133752157.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paul Sabatier University", 
          "id": "https://www.grid.ac/institutes/grid.15781.3a", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Puls\u00e9s (UMR 5147: Unit\u00e9 Mixte de Recherche CNRS - Universit\u00e9 Paul Sabatier, INSA de Toulouse.) , 143 avenue de Rangueil, 31400, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nardone", 
        "givenName": "M.", 
        "id": "sg:person.014637577632.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014637577632.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.418949.9", 
          "name": [
            "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, MD, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prokhorova", 
        "givenName": "T. G.", 
        "id": "sg:person.010441240110.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010441240110.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.418949.9", 
          "name": [
            "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, MD, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yagubskii", 
        "givenName": "E. B.", 
        "id": "sg:person.01247222613.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247222613.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Barcelona", 
          "id": "https://www.grid.ac/institutes/grid.7080.f", 
          "name": [
            "Institut de Ci\u00e8ncia de Materials de Barcelona (ICMAB - CSIC), Campus UAB, 08193 Bellaterra, Catalunya, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Canadell", 
        "givenName": "E.", 
        "id": "sg:person.01157366062.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157366062.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.69.085112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000766913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.085112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000766913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35044035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009592175", 
          "https://doi.org/10.1038/35044035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35044035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009592175", 
          "https://doi.org/10.1038/35044035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b101134k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026937221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1962.0200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039748620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0011-2275(01)00069-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042767168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200304283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044141655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.1308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049145043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.1308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049145043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr030641n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054018880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr030641n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054018880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic001193u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055543264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic001193u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055543264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic990102u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055589522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic990102u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055589522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00154a022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055709816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0273849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055831294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0273849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055831294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jp4:2004114060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056985777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.14457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060577553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.14457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060577553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.104504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.104504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.144523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060609337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.144523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060609337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.014543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060614126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.014543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060614126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i1996-00502-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064234596"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-05", 
    "datePublishedReg": "2006-05-01", 
    "description": "The Shubnikov-de Haas (SdH) oscillation spectra of the -(BEDT-TTF)4(NH4)[ Cr(C2O4)3] .DMF organic metal have been studied in pulsed magnetic fields of up to either 36 T at ambient pressure or 50 T under hydrostatic pressures of up to 1 GPa. The ambient pressure SdH oscillation spectra can be accounted for by up to six fundamental frequencies which points to a rather complex Fermi surface (FS). A noticeable pressure-induced modification of the FS topology is evidenced since the number of frequencies observed in the spectra progressively decreases as the pressure increases. Above 0.8 GPa, only three compensated orbits are observed, as it is the case for several other isostructural salts of the same family at ambient pressure. Contrary to other organic metals, of which the FS can be regarded as a network of orbits, no frequency combinations are observed for the studied salt, likely due to high magnetic breakdown gap values or (and) high disorder level evidenced by Dingle temperatures as large as \u22437 K.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2006-00199-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Pressure dependence of the Shubnikov-de Haas oscillation spectrum of -(BEDT-TTF)4(NH4)[ Cr(C2 O4)3] .DMF", 
    "pagination": "53-60", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "586785338033f166e1e4f2690206c42a5ea5bd5a05f18fc26a8c292fc5327b95"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2006-00199-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018554528"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2006-00199-4", 
      "https://app.dimensions.ai/details/publication/pub.1018554528"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000585.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140/epjb/e2006-00199-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2006-00199-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2006-00199-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2006-00199-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2006-00199-4'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2006-00199-4 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N3c024880b1bc460a93d9770b439fb351
4 schema:citation sg:pub.10.1038/35044035
5 https://doi.org/10.1002/adfm.200304283
6 https://doi.org/10.1016/s0011-2275(01)00069-8
7 https://doi.org/10.1021/cr030641n
8 https://doi.org/10.1021/ic001193u
9 https://doi.org/10.1021/ic990102u
10 https://doi.org/10.1021/ja00154a022
11 https://doi.org/10.1021/ja0273849
12 https://doi.org/10.1039/b101134k
13 https://doi.org/10.1051/jp4:2004114060
14 https://doi.org/10.1098/rspa.1962.0200
15 https://doi.org/10.1103/physrevb.52.14457
16 https://doi.org/10.1103/physrevb.68.104504
17 https://doi.org/10.1103/physrevb.69.085112
18 https://doi.org/10.1103/physrevb.69.144523
19 https://doi.org/10.1103/physrevb.72.014543
20 https://doi.org/10.1103/physrevlett.76.1308
21 https://doi.org/10.1209/epl/i1996-00502-1
22 schema:datePublished 2006-05
23 schema:datePublishedReg 2006-05-01
24 schema:description The Shubnikov-de Haas (SdH) oscillation spectra of the -(BEDT-TTF)4(NH4)[ Cr(C2O4)3] .DMF organic metal have been studied in pulsed magnetic fields of up to either 36 T at ambient pressure or 50 T under hydrostatic pressures of up to 1 GPa. The ambient pressure SdH oscillation spectra can be accounted for by up to six fundamental frequencies which points to a rather complex Fermi surface (FS). A noticeable pressure-induced modification of the FS topology is evidenced since the number of frequencies observed in the spectra progressively decreases as the pressure increases. Above 0.8 GPa, only three compensated orbits are observed, as it is the case for several other isostructural salts of the same family at ambient pressure. Contrary to other organic metals, of which the FS can be regarded as a network of orbits, no frequency combinations are observed for the studied salt, likely due to high magnetic breakdown gap values or (and) high disorder level evidenced by Dingle temperatures as large as ≃7 K.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N2162719013414a0e8b3195cf67df95f1
29 N526ce40ad63a4870b43dfd3c92bc58ed
30 sg:journal.1129956
31 schema:name Pressure dependence of the Shubnikov-de Haas oscillation spectrum of -(BEDT-TTF)4(NH4)[ Cr(C2 O4)3] .DMF
32 schema:pagination 53-60
33 schema:productId N0286cc7764fe4aba87a944514c45d49c
34 N0f9617a767714fccac529592469d9773
35 N6d2c9c489f254b1c943d42707047c3ab
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018554528
37 https://doi.org/10.1140/epjb/e2006-00199-4
38 schema:sdDatePublished 2019-04-11T01:19
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N5daf81087dcc4f08a85e557247b52b66
41 schema:url http://link.springer.com/10.1140/epjb/e2006-00199-4
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N009c2b7924c845399facd97d028cde6c rdf:first sg:person.01247222613.83
46 rdf:rest N7bd140017bd043e189066c5ddb0b1063
47 N0286cc7764fe4aba87a944514c45d49c schema:name doi
48 schema:value 10.1140/epjb/e2006-00199-4
49 rdf:type schema:PropertyValue
50 N045927e83c61463c8395e8f6abff31ac rdf:first sg:person.01133752157.91
51 rdf:rest Nb0da102d122f4f1aa03ebb5cc74403d3
52 N0f9617a767714fccac529592469d9773 schema:name readcube_id
53 schema:value 586785338033f166e1e4f2690206c42a5ea5bd5a05f18fc26a8c292fc5327b95
54 rdf:type schema:PropertyValue
55 N2162719013414a0e8b3195cf67df95f1 schema:volumeNumber 51
56 rdf:type schema:PublicationVolume
57 N3c024880b1bc460a93d9770b439fb351 rdf:first sg:person.015624012501.69
58 rdf:rest Nd967ce3f79ec42fdb3ce166eb4e5845c
59 N526ce40ad63a4870b43dfd3c92bc58ed schema:issueNumber 1
60 rdf:type schema:PublicationIssue
61 N5daf81087dcc4f08a85e557247b52b66 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N6d2c9c489f254b1c943d42707047c3ab schema:name dimensions_id
64 schema:value pub.1018554528
65 rdf:type schema:PropertyValue
66 N7bd140017bd043e189066c5ddb0b1063 rdf:first sg:person.01157366062.58
67 rdf:rest rdf:nil
68 Nb0da102d122f4f1aa03ebb5cc74403d3 rdf:first sg:person.014637577632.43
69 rdf:rest Ne780ba58ef354996a4d85dd689adf267
70 Nd967ce3f79ec42fdb3ce166eb4e5845c rdf:first sg:person.014074240772.56
71 rdf:rest N045927e83c61463c8395e8f6abff31ac
72 Ne780ba58ef354996a4d85dd689adf267 rdf:first sg:person.010441240110.90
73 rdf:rest N009c2b7924c845399facd97d028cde6c
74 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
75 schema:name Physical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
78 schema:name Other Physical Sciences
79 rdf:type schema:DefinedTerm
80 sg:journal.1129956 schema:issn 1155-4304
81 1286-4862
82 schema:name The European Physical Journal B
83 rdf:type schema:Periodical
84 sg:person.010441240110.90 schema:affiliation https://www.grid.ac/institutes/grid.418949.9
85 schema:familyName Prokhorova
86 schema:givenName T. G.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010441240110.90
88 rdf:type schema:Person
89 sg:person.01133752157.91 schema:affiliation https://www.grid.ac/institutes/grid.15781.3a
90 schema:familyName Audouard
91 schema:givenName A.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133752157.91
93 rdf:type schema:Person
94 sg:person.01157366062.58 schema:affiliation https://www.grid.ac/institutes/grid.7080.f
95 schema:familyName Canadell
96 schema:givenName E.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157366062.58
98 rdf:type schema:Person
99 sg:person.01247222613.83 schema:affiliation https://www.grid.ac/institutes/grid.418949.9
100 schema:familyName Yagubskii
101 schema:givenName E. B.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247222613.83
103 rdf:type schema:Person
104 sg:person.014074240772.56 schema:affiliation https://www.grid.ac/institutes/grid.7080.f
105 schema:familyName Laukhin
106 schema:givenName V. N.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014074240772.56
108 rdf:type schema:Person
109 sg:person.014637577632.43 schema:affiliation https://www.grid.ac/institutes/grid.15781.3a
110 schema:familyName Nardone
111 schema:givenName M.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014637577632.43
113 rdf:type schema:Person
114 sg:person.015624012501.69 schema:affiliation https://www.grid.ac/institutes/grid.15781.3a
115 schema:familyName Vignolles
116 schema:givenName D.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015624012501.69
118 rdf:type schema:Person
119 sg:pub.10.1038/35044035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009592175
120 https://doi.org/10.1038/35044035
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/adfm.200304283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044141655
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0011-2275(01)00069-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042767168
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/cr030641n schema:sameAs https://app.dimensions.ai/details/publication/pub.1054018880
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1021/ic001193u schema:sameAs https://app.dimensions.ai/details/publication/pub.1055543264
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1021/ic990102u schema:sameAs https://app.dimensions.ai/details/publication/pub.1055589522
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1021/ja00154a022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055709816
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1021/ja0273849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055831294
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1039/b101134k schema:sameAs https://app.dimensions.ai/details/publication/pub.1026937221
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1051/jp4:2004114060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056985777
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1098/rspa.1962.0200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039748620
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevb.52.14457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060577553
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevb.68.104504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060607466
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevb.69.085112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000766913
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevb.69.144523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060609337
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevb.72.014543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060614126
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.76.1308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049145043
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1209/epl/i1996-00502-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064234596
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.15781.3a schema:alternateName Paul Sabatier University
157 schema:name Laboratoire National des Champs Magnétiques Pulsés (UMR 5147: Unité Mixte de Recherche CNRS - Université Paul Sabatier, INSA de Toulouse.) , 143 avenue de Rangueil, 31400, Toulouse, France
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.418949.9 schema:alternateName Institute of Problems of Chemical Physics
160 schema:name Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, MD, Russia
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.7080.f schema:alternateName Autonomous University of Barcelona
163 schema:name Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
164 Institut de Ciència de Materials de Barcelona (ICMAB - CSIC), Campus UAB, 08193 Bellaterra, Catalunya, Spain
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...