Hydraulic jump in one-dimensional flow View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-12-23

AUTHORS

S. B. Singha, J. K. Bhattacharjee, A. K. Ray

ABSTRACT

.In the presence of viscosity the hydraulic jump in one dimension is seen to be a first-order transition. A scaling relation for the position of the jump has been determined by applying an averaging technique on the stationary hydrodynamic equations. This gives a linear height profile before the jump, as well as a clear dependence of the magnitude of the jump on the outer boundary condition. The importance of viscosity in the jump formation has been convincingly established, and its physical basis has been understood by a time-dependent analysis of the flow equations. In doing so, a very close correspondence has been revealed between a perturbation equation for the flow rate and the metric of an acoustic white hole. We finally provide experimental support for our heuristically developed theory. More... »

PAGES

417-426

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2005-00404-0

DOI

http://dx.doi.org/10.1140/epjb/e2005-00404-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045848164


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhaba Road, 400005, Mumbai, India", 
          "id": "http://www.grid.ac/institutes/grid.22401.35", 
          "name": [
            "Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhaba Road, 400005, Mumbai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singha", 
        "givenName": "S. B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.417929.0", 
          "name": [
            "Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharjee", 
        "givenName": "J. K.", 
        "id": "sg:person.015365735162.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, 211019, Allahabad, India", 
          "id": "http://www.grid.ac/institutes/grid.450311.2", 
          "name": [
            "Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, 211019, Allahabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ray", 
        "givenName": "A. K.", 
        "id": "sg:person.012074312507.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012074312507.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-85829-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711103", 
          "https://doi.org/10.1007/978-3-642-85829-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/211813a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031398212", 
          "https://doi.org/10.1038/211813a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12-23", 
    "datePublishedReg": "2005-12-23", 
    "description": "Abstract.In the presence of viscosity the hydraulic jump in one\ndimension is seen to be a first-order transition. A scaling relation\nfor the position of the jump has been determined by applying an\naveraging technique on the stationary hydrodynamic equations. This\ngives a linear height profile before the jump, as well as a clear\ndependence of the magnitude of the jump on the outer boundary\ncondition. The importance of viscosity in the jump formation has been \nconvincingly established, and its physical basis has been understood \nby a time-dependent analysis of the flow equations. In doing so, a \nvery close correspondence has been revealed between a perturbation \nequation for the flow rate and the metric of an acoustic white hole. \nWe finally provide experimental support for our heuristically \ndeveloped theory.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjb/e2005-00404-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "keywords": [
      "hydraulic jump", 
      "one-dimensional flow", 
      "jump formation", 
      "flow rate", 
      "flow equations", 
      "importance of viscosity", 
      "presence of viscosity", 
      "hydrodynamic equations", 
      "height profiles", 
      "averaging technique", 
      "viscosity", 
      "time-dependent analysis", 
      "physical basis", 
      "equations", 
      "acoustic white hole", 
      "jump", 
      "flow", 
      "first-order transition", 
      "holes", 
      "conditions", 
      "technique", 
      "dependence", 
      "magnitude", 
      "close correspondence", 
      "formation", 
      "profile", 
      "experimental support", 
      "dimensions", 
      "transition", 
      "rate", 
      "stationary hydrodynamic equations", 
      "perturbations", 
      "position", 
      "analysis", 
      "theory", 
      "basis", 
      "presence", 
      "metrics", 
      "importance", 
      "relation", 
      "correspondence", 
      "white hole", 
      "support", 
      "linear height profile"
    ], 
    "name": "Hydraulic jump in one-dimensional flow", 
    "pagination": "417-426", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045848164"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2005-00404-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2005-00404-0", 
      "https://app.dimensions.ai/details/publication/pub.1045848164"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_404.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjb/e2005-00404-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00404-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00404-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00404-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00404-0'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      22 PREDICATES      71 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2005-00404-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne54bab8563c945cab0f3be36bf0650a1
4 schema:citation sg:pub.10.1007/978-3-642-85829-1
5 sg:pub.10.1038/211813a0
6 schema:datePublished 2005-12-23
7 schema:datePublishedReg 2005-12-23
8 schema:description Abstract.In the presence of viscosity the hydraulic jump in one dimension is seen to be a first-order transition. A scaling relation for the position of the jump has been determined by applying an averaging technique on the stationary hydrodynamic equations. This gives a linear height profile before the jump, as well as a clear dependence of the magnitude of the jump on the outer boundary condition. The importance of viscosity in the jump formation has been convincingly established, and its physical basis has been understood by a time-dependent analysis of the flow equations. In doing so, a very close correspondence has been revealed between a perturbation equation for the flow rate and the metric of an acoustic white hole. We finally provide experimental support for our heuristically developed theory.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N2af7e1babcd74dfa862f8193aee1544a
13 N5c4a0fce2871488bab1b53bb2a1e1b46
14 sg:journal.1129956
15 schema:keywords acoustic white hole
16 analysis
17 averaging technique
18 basis
19 close correspondence
20 conditions
21 correspondence
22 dependence
23 dimensions
24 equations
25 experimental support
26 first-order transition
27 flow
28 flow equations
29 flow rate
30 formation
31 height profiles
32 holes
33 hydraulic jump
34 hydrodynamic equations
35 importance
36 importance of viscosity
37 jump
38 jump formation
39 linear height profile
40 magnitude
41 metrics
42 one-dimensional flow
43 perturbations
44 physical basis
45 position
46 presence
47 presence of viscosity
48 profile
49 rate
50 relation
51 stationary hydrodynamic equations
52 support
53 technique
54 theory
55 time-dependent analysis
56 transition
57 viscosity
58 white hole
59 schema:name Hydraulic jump in one-dimensional flow
60 schema:pagination 417-426
61 schema:productId N671f8988f10f429b8e9a81644241c38b
62 N69ec308e6ee147c78754e8c6c7eb1313
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045848164
64 https://doi.org/10.1140/epjb/e2005-00404-0
65 schema:sdDatePublished 2022-01-01T18:14
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N15f83e8bf6224d88936c1ee9af2ae75e
68 schema:url https://doi.org/10.1140/epjb/e2005-00404-0
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N15f83e8bf6224d88936c1ee9af2ae75e schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N26b5c0bd62184e4abb178ea9e5e96684 rdf:first sg:person.015365735162.55
75 rdf:rest N2db4c79fd3a2480ba143c4fecbb39f01
76 N2af7e1babcd74dfa862f8193aee1544a schema:issueNumber 3
77 rdf:type schema:PublicationIssue
78 N2db4c79fd3a2480ba143c4fecbb39f01 rdf:first sg:person.012074312507.78
79 rdf:rest rdf:nil
80 N5c4a0fce2871488bab1b53bb2a1e1b46 schema:volumeNumber 48
81 rdf:type schema:PublicationVolume
82 N671f8988f10f429b8e9a81644241c38b schema:name doi
83 schema:value 10.1140/epjb/e2005-00404-0
84 rdf:type schema:PropertyValue
85 N69ec308e6ee147c78754e8c6c7eb1313 schema:name dimensions_id
86 schema:value pub.1045848164
87 rdf:type schema:PropertyValue
88 N6aae1cf14b7548809eff51d86c10c70c schema:affiliation grid-institutes:grid.22401.35
89 schema:familyName Singha
90 schema:givenName S. B.
91 rdf:type schema:Person
92 Ne54bab8563c945cab0f3be36bf0650a1 rdf:first N6aae1cf14b7548809eff51d86c10c70c
93 rdf:rest N26b5c0bd62184e4abb178ea9e5e96684
94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
95 schema:name Mathematical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
98 schema:name Pure Mathematics
99 rdf:type schema:DefinedTerm
100 sg:journal.1129956 schema:issn 1155-4304
101 1286-4862
102 schema:name The European Physical Journal B
103 schema:publisher Springer Nature
104 rdf:type schema:Periodical
105 sg:person.012074312507.78 schema:affiliation grid-institutes:grid.450311.2
106 schema:familyName Ray
107 schema:givenName A. K.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012074312507.78
109 rdf:type schema:Person
110 sg:person.015365735162.55 schema:affiliation grid-institutes:grid.417929.0
111 schema:familyName Bhattacharjee
112 schema:givenName J. K.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55
114 rdf:type schema:Person
115 sg:pub.10.1007/978-3-642-85829-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109711103
116 https://doi.org/10.1007/978-3-642-85829-1
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/211813a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031398212
119 https://doi.org/10.1038/211813a0
120 rdf:type schema:CreativeWork
121 grid-institutes:grid.22401.35 schema:alternateName Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhaba Road, 400005, Mumbai, India
122 schema:name Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhaba Road, 400005, Mumbai, India
123 rdf:type schema:Organization
124 grid-institutes:grid.417929.0 schema:alternateName Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
125 schema:name Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
126 rdf:type schema:Organization
127 grid-institutes:grid.450311.2 schema:alternateName Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, 211019, Allahabad, India
128 schema:name Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, 211019, Allahabad, India
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...