Metal-insulator transition in the quarter-filled frustrated checkerboard lattice View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-04

AUTHORS

Y. Z. Zhang, Minh-Tien Tran, V. Yushankhai, P. Thalmeier

ABSTRACT

We study the electronic structure and correlations in the geometrically frustrated two dimensional checkerboard lattice. In the large U limit considered here we start from an extended Hubbard model of spinless fermions at half-filling. We investigate the model within two distinct Green’s function approaches: In the first approach a single-site representation decoupling scheme is used that includes the effect of nearest neighbor charge fluctuations. In the second approach a cluster representation leading to a ‘multiorbital’ model is investigated which includes intra-cluster correlations more rigorously and those between clusters on a mean field basis. It is demonstrated that with increasing nearest-neighbor Coulomb interaction V both approaches lead to a metal-insulator transition with an associated ‘Mott-Hubbard’ like gap caused by V. Within the single site approach we also explore the possibility of charge order. Furthermore we investigate the evolution of the quasiparticle bands as funtion of V. More... »

PAGES

265-276

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2005-00125-4

DOI

http://dx.doi.org/10.1140/epjb/e2005-00125-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028699124


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, N\u00f6thnitzer Strasse, 38 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Y. Z.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, N\u00f6thnitzer Strasse, 38 01187, Dresden, Germany", 
            "Institute of Physics, P.O. Box 429, 10000, Hanoi, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tran", 
        "givenName": "Minh-Tien", 
        "id": "sg:person.0700007547.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700007547.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Institute for Nuclear Research", 
          "id": "https://www.grid.ac/institutes/grid.33762.33", 
          "name": [
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, N\u00f6thnitzer Strasse, 38 01187, Dresden, Germany", 
            "Joint Institute for Nuclear Research, Dubna, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yushankhai", 
        "givenName": "V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Chemische Physik fester Stoffe, N\u00f6thnitzer Stra\u00dfe, 40 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thalmeier", 
        "givenName": "P.", 
        "id": "sg:person.015501240375.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.92.246404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003993025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.246404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003993025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.226402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004562213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.226402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004562213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/tf9383400678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012919975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.4046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013410618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.4046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013410618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-3889(200212)11:12<892::aid-andp892>3.0.co;2-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016169488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/144327b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020600841", 
          "https://doi.org/10.1038/144327b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/144327b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020600841", 
          "https://doi.org/10.1038/144327b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.045105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022477727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.045105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022477727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.085109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032336544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.085109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032336544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.9670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050816628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.9670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050816628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.045121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052711287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.045121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052711287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.102.1008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060417332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.102.1008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060417332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.9397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060550296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.9397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060550296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.7904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.7904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.245113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060612249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.245113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060612249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.18.692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.18.692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.096404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.096404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839416"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-04", 
    "datePublishedReg": "2005-04-01", 
    "description": "We study the electronic structure and correlations in the geometrically frustrated two dimensional checkerboard lattice. In the large U limit considered here we start from an extended Hubbard model of spinless fermions at half-filling. We investigate the model within two distinct Green\u2019s function approaches: In the first approach a single-site representation decoupling scheme is used that includes the effect of nearest neighbor charge fluctuations. In the second approach a cluster representation leading to a \u2018multiorbital\u2019 model is investigated which includes intra-cluster correlations more rigorously and those between clusters on a mean field basis. It is demonstrated that with increasing nearest-neighbor Coulomb interaction V both approaches lead to a metal-insulator transition with an associated \u2018Mott-Hubbard\u2019 like gap caused by V. Within the single site approach we also explore the possibility of charge order. Furthermore we investigate the evolution of the quasiparticle bands as funtion of V.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2005-00125-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Metal-insulator transition in the quarter-filled frustrated checkerboard lattice", 
    "pagination": "265-276", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "88b70dcef646fc9c7547ae81576d3d27731654cb9486e3a41ed93a5d05054795"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2005-00125-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028699124"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2005-00125-4", 
      "https://app.dimensions.ai/details/publication/pub.1028699124"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140/epjb/e2005-00125-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00125-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00125-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00125-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00125-4'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2005-00125-4 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N782ee11977c44672b4b54197bac31dec
4 schema:citation sg:pub.10.1038/144327b0
5 https://doi.org/10.1002/1521-3889(200212)11:12<892::aid-andp892>3.0.co;2-j
6 https://doi.org/10.1039/tf9383400678
7 https://doi.org/10.1103/physrev.102.1008
8 https://doi.org/10.1103/physrevb.39.9397
9 https://doi.org/10.1103/physrevb.49.7904
10 https://doi.org/10.1103/physrevb.49.9670
11 https://doi.org/10.1103/physrevb.63.045105
12 https://doi.org/10.1103/physrevb.63.045121
13 https://doi.org/10.1103/physrevb.64.085109
14 https://doi.org/10.1103/physrevb.70.245113
15 https://doi.org/10.1103/physrevlett.18.692
16 https://doi.org/10.1103/physrevlett.26.236
17 https://doi.org/10.1103/physrevlett.78.3729
18 https://doi.org/10.1103/physrevlett.82.4046
19 https://doi.org/10.1103/physrevlett.85.1052
20 https://doi.org/10.1103/physrevlett.89.226402
21 https://doi.org/10.1103/physrevlett.90.096404
22 https://doi.org/10.1103/physrevlett.92.246404
23 https://doi.org/10.1103/revmodphys.70.1039
24 schema:datePublished 2005-04
25 schema:datePublishedReg 2005-04-01
26 schema:description We study the electronic structure and correlations in the geometrically frustrated two dimensional checkerboard lattice. In the large U limit considered here we start from an extended Hubbard model of spinless fermions at half-filling. We investigate the model within two distinct Green’s function approaches: In the first approach a single-site representation decoupling scheme is used that includes the effect of nearest neighbor charge fluctuations. In the second approach a cluster representation leading to a ‘multiorbital’ model is investigated which includes intra-cluster correlations more rigorously and those between clusters on a mean field basis. It is demonstrated that with increasing nearest-neighbor Coulomb interaction V both approaches lead to a metal-insulator transition with an associated ‘Mott-Hubbard’ like gap caused by V. Within the single site approach we also explore the possibility of charge order. Furthermore we investigate the evolution of the quasiparticle bands as funtion of V.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf Nc2a2702370f44295838a6ffd95ba1193
31 Neb7204d35a714c8b8732fce2bc1bdc74
32 sg:journal.1129956
33 schema:name Metal-insulator transition in the quarter-filled frustrated checkerboard lattice
34 schema:pagination 265-276
35 schema:productId N7b553d724a7340f3942a1979f2aef31e
36 N957ae4be7062466caaa0ffff4b93c0f4
37 Neceacfe4b3144294910fef6f515361ca
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028699124
39 https://doi.org/10.1140/epjb/e2005-00125-4
40 schema:sdDatePublished 2019-04-10T22:32
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nae482419709f4e2fbdacd7172a5d1fa2
43 schema:url http://link.springer.com/10.1140/epjb/e2005-00125-4
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N44f7c3f0d64846da93128f3037419b4b rdf:first sg:person.0700007547.42
48 rdf:rest Nc5ff4be83b974089a70a91182bc48339
49 N782ee11977c44672b4b54197bac31dec rdf:first Nec6591b265114ab98f21256adc96e7ea
50 rdf:rest N44f7c3f0d64846da93128f3037419b4b
51 N7b553d724a7340f3942a1979f2aef31e schema:name dimensions_id
52 schema:value pub.1028699124
53 rdf:type schema:PropertyValue
54 N957ae4be7062466caaa0ffff4b93c0f4 schema:name readcube_id
55 schema:value 88b70dcef646fc9c7547ae81576d3d27731654cb9486e3a41ed93a5d05054795
56 rdf:type schema:PropertyValue
57 N9690f8897df4422892e3734d38e4e671 schema:affiliation https://www.grid.ac/institutes/grid.33762.33
58 schema:familyName Yushankhai
59 schema:givenName V.
60 rdf:type schema:Person
61 Nae482419709f4e2fbdacd7172a5d1fa2 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nc2a2702370f44295838a6ffd95ba1193 schema:issueNumber 3
64 rdf:type schema:PublicationIssue
65 Nc5ff4be83b974089a70a91182bc48339 rdf:first N9690f8897df4422892e3734d38e4e671
66 rdf:rest Nf88baa4588294c5b9b2449bc7870d6c6
67 Neb7204d35a714c8b8732fce2bc1bdc74 schema:volumeNumber 44
68 rdf:type schema:PublicationVolume
69 Nec6591b265114ab98f21256adc96e7ea schema:affiliation https://www.grid.ac/institutes/grid.419560.f
70 schema:familyName Zhang
71 schema:givenName Y. Z.
72 rdf:type schema:Person
73 Neceacfe4b3144294910fef6f515361ca schema:name doi
74 schema:value 10.1140/epjb/e2005-00125-4
75 rdf:type schema:PropertyValue
76 Nf88baa4588294c5b9b2449bc7870d6c6 rdf:first sg:person.015501240375.83
77 rdf:rest rdf:nil
78 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
79 schema:name Medical and Health Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
82 schema:name Clinical Sciences
83 rdf:type schema:DefinedTerm
84 sg:journal.1129956 schema:issn 1155-4304
85 1286-4862
86 schema:name The European Physical Journal B
87 rdf:type schema:Periodical
88 sg:person.015501240375.83 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
89 schema:familyName Thalmeier
90 schema:givenName P.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83
92 rdf:type schema:Person
93 sg:person.0700007547.42 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
94 schema:familyName Tran
95 schema:givenName Minh-Tien
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700007547.42
97 rdf:type schema:Person
98 sg:pub.10.1038/144327b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020600841
99 https://doi.org/10.1038/144327b0
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1002/1521-3889(200212)11:12<892::aid-andp892>3.0.co;2-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1016169488
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1039/tf9383400678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012919975
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrev.102.1008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060417332
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.39.9397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060550296
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevb.49.7904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060571424
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevb.49.9670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050816628
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevb.63.045105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022477727
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevb.63.045121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052711287
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevb.64.085109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032336544
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevb.70.245113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060612249
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevlett.18.692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060769884
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.26.236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060774511
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevlett.78.3729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815227
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevlett.82.4046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013410618
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.85.1052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821626
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.89.226402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004562213
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.90.096404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826402
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.92.246404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003993025
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/revmodphys.70.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839416
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.33762.33 schema:alternateName Joint Institute for Nuclear Research
140 schema:name Joint Institute for Nuclear Research, Dubna, Russia
141 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse, 38 01187, Dresden, Germany
142 rdf:type schema:Organization
143 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
144 schema:name Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße, 40 01187, Dresden, Germany
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
147 schema:name Institute of Physics, P.O. Box 429, 10000, Hanoi, Vietnam
148 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse, 38 01187, Dresden, Germany
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...