Disturbing synchronization: Propagation of perturbations in networks of coupled oscillators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-01

AUTHORS

D. H. Zanette

ABSTRACT

.We study the response of an ensemble of synchronized phase oscillators to an external harmonic perturbation applied to one of the oscillators. Our main goal is to relate the propagation of the perturbation signal to the structure of the interaction network underlying the ensemble. The overall response of the system is resonant, exhibiting a maximum when the perturbation frequency coincides with the natural frequency of the phase oscillators. The individual response, on the other hand, can strongly depend on the distance to the place where the perturbation is applied. For small distances on a random network, the system behaves as a linear dissipative medium: the perturbation propagates at constant speed, while its amplitude decreases exponentially with the distance. For larger distances, the response saturates to an almost constant level. These different regimes can be analytically explained in terms of the length distribution of the paths that propagate the perturbation signal. We study the extension of these results to other interaction patterns, and show that essentially the same phenomena are observed in networks of chaotic oscillators. More... »

PAGES

97-108

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2005-00032-8

DOI

http://dx.doi.org/10.1140/epjb/e2005-00032-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020578213


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas, Centro At\u00f3mico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.423606.5", 
          "name": [
            "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas, Centro At\u00f3mico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zanette", 
        "givenName": "D. H.", 
        "id": "sg:person.0673125037.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673125037.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-97294-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018310459", 
          "https://doi.org/10.1007/978-3-642-97294-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/338334a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017767690", 
          "https://doi.org/10.1038/338334a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-69689-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004761286", 
          "https://doi.org/10.1007/978-3-642-69689-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican1293-102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056645247", 
          "https://doi.org/10.1038/scientificamerican1293-102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0576-74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056542049", 
          "https://doi.org/10.1038/scientificamerican0576-74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3484-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001930010", 
          "https://doi.org/10.1007/978-1-4757-3484-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-01", 
    "datePublishedReg": "2005-01-01", 
    "description": "Abstract.We study the response of an ensemble of synchronized phase\noscillators to an external harmonic perturbation applied to one of\nthe oscillators. Our main goal is to relate the propagation of the\nperturbation signal to the structure of the interaction network\nunderlying the ensemble. The overall response of the system is\nresonant, exhibiting a maximum when the perturbation frequency\ncoincides with the natural frequency of the phase oscillators. The\nindividual response, on the other hand, can strongly depend on the\ndistance to the place where the perturbation is applied. For small\ndistances on a random network, the system behaves as a linear\ndissipative medium: the perturbation propagates at constant speed,\nwhile its amplitude decreases exponentially with the distance. For\nlarger distances, the response saturates to an almost constant\nlevel. These different regimes can be analytically explained in\nterms of the length distribution of the paths that propagate the\nperturbation signal. We study the extension of these results to\nother interaction patterns, and show that essentially the same\nphenomena are observed in networks of chaotic oscillators.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjb/e2005-00032-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "keywords": [
      "propagation of perturbations", 
      "chaotic oscillators", 
      "external harmonic perturbation", 
      "random networks", 
      "phase oscillators", 
      "perturbation signal", 
      "harmonic perturbations", 
      "synchronized phase", 
      "dissipative medium", 
      "oscillator", 
      "perturbations", 
      "natural frequencies", 
      "perturbation propagates", 
      "perturbation frequency", 
      "network", 
      "length distribution", 
      "ensemble", 
      "main goal", 
      "different regimes", 
      "synchronization", 
      "constant speed", 
      "system", 
      "propagation", 
      "extension", 
      "large distances", 
      "interaction networks", 
      "terms", 
      "distance", 
      "path", 
      "speed", 
      "signals", 
      "distribution", 
      "resonant", 
      "phenomenon", 
      "regime", 
      "results", 
      "goal", 
      "amplitude", 
      "structure", 
      "interaction patterns", 
      "propagates", 
      "frequency", 
      "maximum", 
      "hand", 
      "response", 
      "individual responses", 
      "medium", 
      "place", 
      "phase", 
      "patterns", 
      "levels", 
      "overall response"
    ], 
    "name": "Disturbing synchronization: Propagation of perturbations in networks of coupled oscillators", 
    "pagination": "97-108", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020578213"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2005-00032-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2005-00032-8", 
      "https://app.dimensions.ai/details/publication/pub.1020578213"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_404.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjb/e2005-00032-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00032-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00032-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00032-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00032-8'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      22 PREDICATES      84 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2005-00032-8 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author Na2d97cb7b53a4921817ccc1527f8d9fa
4 schema:citation sg:pub.10.1007/978-1-4757-3484-3
5 sg:pub.10.1007/978-3-642-69689-3
6 sg:pub.10.1007/978-3-642-97294-2
7 sg:pub.10.1038/338334a0
8 sg:pub.10.1038/scientificamerican0576-74
9 sg:pub.10.1038/scientificamerican1293-102
10 schema:datePublished 2005-01
11 schema:datePublishedReg 2005-01-01
12 schema:description Abstract.We study the response of an ensemble of synchronized phase oscillators to an external harmonic perturbation applied to one of the oscillators. Our main goal is to relate the propagation of the perturbation signal to the structure of the interaction network underlying the ensemble. The overall response of the system is resonant, exhibiting a maximum when the perturbation frequency coincides with the natural frequency of the phase oscillators. The individual response, on the other hand, can strongly depend on the distance to the place where the perturbation is applied. For small distances on a random network, the system behaves as a linear dissipative medium: the perturbation propagates at constant speed, while its amplitude decreases exponentially with the distance. For larger distances, the response saturates to an almost constant level. These different regimes can be analytically explained in terms of the length distribution of the paths that propagate the perturbation signal. We study the extension of these results to other interaction patterns, and show that essentially the same phenomena are observed in networks of chaotic oscillators.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N4f4eac983e0042a19a0a0a6be16ebdb7
17 N91f118e4ecf04f0caf593cc6ce30546a
18 sg:journal.1129956
19 schema:keywords amplitude
20 chaotic oscillators
21 constant speed
22 different regimes
23 dissipative medium
24 distance
25 distribution
26 ensemble
27 extension
28 external harmonic perturbation
29 frequency
30 goal
31 hand
32 harmonic perturbations
33 individual responses
34 interaction networks
35 interaction patterns
36 large distances
37 length distribution
38 levels
39 main goal
40 maximum
41 medium
42 natural frequencies
43 network
44 oscillator
45 overall response
46 path
47 patterns
48 perturbation frequency
49 perturbation propagates
50 perturbation signal
51 perturbations
52 phase
53 phase oscillators
54 phenomenon
55 place
56 propagates
57 propagation
58 propagation of perturbations
59 random networks
60 regime
61 resonant
62 response
63 results
64 signals
65 speed
66 structure
67 synchronization
68 synchronized phase
69 system
70 terms
71 schema:name Disturbing synchronization: Propagation of perturbations in networks of coupled oscillators
72 schema:pagination 97-108
73 schema:productId Nc3b5952457014ec6a401251a1f198e7b
74 Nc67045cd3c6f4bc18fa7cc4efa44951e
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020578213
76 https://doi.org/10.1140/epjb/e2005-00032-8
77 schema:sdDatePublished 2022-01-01T18:14
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Ncf595260e93640e88d1c846101b0efff
80 schema:url https://doi.org/10.1140/epjb/e2005-00032-8
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N4f4eac983e0042a19a0a0a6be16ebdb7 schema:issueNumber 1
85 rdf:type schema:PublicationIssue
86 N91f118e4ecf04f0caf593cc6ce30546a schema:volumeNumber 43
87 rdf:type schema:PublicationVolume
88 Na2d97cb7b53a4921817ccc1527f8d9fa rdf:first sg:person.0673125037.10
89 rdf:rest rdf:nil
90 Nc3b5952457014ec6a401251a1f198e7b schema:name doi
91 schema:value 10.1140/epjb/e2005-00032-8
92 rdf:type schema:PropertyValue
93 Nc67045cd3c6f4bc18fa7cc4efa44951e schema:name dimensions_id
94 schema:value pub.1020578213
95 rdf:type schema:PropertyValue
96 Ncf595260e93640e88d1c846101b0efff schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 sg:journal.1129956 schema:issn 1155-4304
105 1286-4862
106 schema:name The European Physical Journal B
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.0673125037.10 schema:affiliation grid-institutes:grid.423606.5
110 schema:familyName Zanette
111 schema:givenName D. H.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673125037.10
113 rdf:type schema:Person
114 sg:pub.10.1007/978-1-4757-3484-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001930010
115 https://doi.org/10.1007/978-1-4757-3484-3
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-3-642-69689-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004761286
118 https://doi.org/10.1007/978-3-642-69689-3
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-3-642-97294-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018310459
121 https://doi.org/10.1007/978-3-642-97294-2
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/338334a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017767690
124 https://doi.org/10.1038/338334a0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/scientificamerican0576-74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056542049
127 https://doi.org/10.1038/scientificamerican0576-74
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/scientificamerican1293-102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056645247
130 https://doi.org/10.1038/scientificamerican1293-102
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.423606.5 schema:alternateName Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina
133 schema:name Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...