Disturbing synchronization: Propagation of perturbations in networks of coupled oscillators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-01

AUTHORS

D. H. Zanette

ABSTRACT

.We study the response of an ensemble of synchronized phase oscillators to an external harmonic perturbation applied to one of the oscillators. Our main goal is to relate the propagation of the perturbation signal to the structure of the interaction network underlying the ensemble. The overall response of the system is resonant, exhibiting a maximum when the perturbation frequency coincides with the natural frequency of the phase oscillators. The individual response, on the other hand, can strongly depend on the distance to the place where the perturbation is applied. For small distances on a random network, the system behaves as a linear dissipative medium: the perturbation propagates at constant speed, while its amplitude decreases exponentially with the distance. For larger distances, the response saturates to an almost constant level. These different regimes can be analytically explained in terms of the length distribution of the paths that propagate the perturbation signal. We study the extension of these results to other interaction patterns, and show that essentially the same phenomena are observed in networks of chaotic oscillators. More... »

PAGES

97-108

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2005-00032-8

DOI

http://dx.doi.org/10.1140/epjb/e2005-00032-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020578213


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas, Centro At\u00f3mico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.423606.5", 
          "name": [
            "Consejo Nacional de Investigaciones Cient\u00edficas y T\u00e9cnicas, Centro At\u00f3mico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zanette", 
        "givenName": "D. H.", 
        "id": "sg:person.0673125037.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673125037.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/scientificamerican1293-102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056645247", 
          "https://doi.org/10.1038/scientificamerican1293-102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-69689-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004761286", 
          "https://doi.org/10.1007/978-3-642-69689-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/338334a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017767690", 
          "https://doi.org/10.1038/338334a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3484-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001930010", 
          "https://doi.org/10.1007/978-1-4757-3484-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0576-74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056542049", 
          "https://doi.org/10.1038/scientificamerican0576-74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97294-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018310459", 
          "https://doi.org/10.1007/978-3-642-97294-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-01", 
    "datePublishedReg": "2005-01-01", 
    "description": "Abstract.We study the response of an ensemble of synchronized phase\noscillators to an external harmonic perturbation applied to one of\nthe oscillators. Our main goal is to relate the propagation of the\nperturbation signal to the structure of the interaction network\nunderlying the ensemble. The overall response of the system is\nresonant, exhibiting a maximum when the perturbation frequency\ncoincides with the natural frequency of the phase oscillators. The\nindividual response, on the other hand, can strongly depend on the\ndistance to the place where the perturbation is applied. For small\ndistances on a random network, the system behaves as a linear\ndissipative medium: the perturbation propagates at constant speed,\nwhile its amplitude decreases exponentially with the distance. For\nlarger distances, the response saturates to an almost constant\nlevel. These different regimes can be analytically explained in\nterms of the length distribution of the paths that propagate the\nperturbation signal. We study the extension of these results to\nother interaction patterns, and show that essentially the same\nphenomena are observed in networks of chaotic oscillators.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjb/e2005-00032-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "keywords": [
      "propagation of perturbations", 
      "dissipative medium", 
      "random networks", 
      "phase oscillators", 
      "chaotic oscillators", 
      "external harmonic perturbation", 
      "harmonic perturbations", 
      "synchronized phase", 
      "perturbation propagates", 
      "perturbation signal", 
      "perturbation frequency", 
      "natural frequencies", 
      "different regimes", 
      "oscillator", 
      "perturbations", 
      "large distances", 
      "length distribution", 
      "constant speed", 
      "propagation", 
      "ensemble", 
      "network", 
      "main goal", 
      "distance", 
      "synchronization", 
      "propagates", 
      "system", 
      "extension", 
      "amplitude", 
      "regime", 
      "distribution", 
      "interaction networks", 
      "path", 
      "terms", 
      "resonant", 
      "speed", 
      "phenomenon", 
      "frequency", 
      "signals", 
      "structure", 
      "maximum", 
      "results", 
      "medium", 
      "phase", 
      "interaction patterns", 
      "goal", 
      "hand", 
      "place", 
      "response", 
      "overall response", 
      "patterns", 
      "individual responses", 
      "levels"
    ], 
    "name": "Disturbing synchronization: Propagation of perturbations in networks of coupled oscillators", 
    "pagination": "97-108", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020578213"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2005-00032-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2005-00032-8", 
      "https://app.dimensions.ai/details/publication/pub.1020578213"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_401.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjb/e2005-00032-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00032-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00032-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00032-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2005-00032-8'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      22 PREDICATES      84 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2005-00032-8 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N66f5de2ec8fd449d83c1090289d5f7cb
4 schema:citation sg:pub.10.1007/978-1-4757-3484-3
5 sg:pub.10.1007/978-3-642-69689-3
6 sg:pub.10.1007/978-3-642-97294-2
7 sg:pub.10.1038/338334a0
8 sg:pub.10.1038/scientificamerican0576-74
9 sg:pub.10.1038/scientificamerican1293-102
10 schema:datePublished 2005-01
11 schema:datePublishedReg 2005-01-01
12 schema:description Abstract.We study the response of an ensemble of synchronized phase oscillators to an external harmonic perturbation applied to one of the oscillators. Our main goal is to relate the propagation of the perturbation signal to the structure of the interaction network underlying the ensemble. The overall response of the system is resonant, exhibiting a maximum when the perturbation frequency coincides with the natural frequency of the phase oscillators. The individual response, on the other hand, can strongly depend on the distance to the place where the perturbation is applied. For small distances on a random network, the system behaves as a linear dissipative medium: the perturbation propagates at constant speed, while its amplitude decreases exponentially with the distance. For larger distances, the response saturates to an almost constant level. These different regimes can be analytically explained in terms of the length distribution of the paths that propagate the perturbation signal. We study the extension of these results to other interaction patterns, and show that essentially the same phenomena are observed in networks of chaotic oscillators.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N1edd43f2c3bc476a90d93174341922a6
17 Ned7ef9a815534891926e25689585a061
18 sg:journal.1129956
19 schema:keywords amplitude
20 chaotic oscillators
21 constant speed
22 different regimes
23 dissipative medium
24 distance
25 distribution
26 ensemble
27 extension
28 external harmonic perturbation
29 frequency
30 goal
31 hand
32 harmonic perturbations
33 individual responses
34 interaction networks
35 interaction patterns
36 large distances
37 length distribution
38 levels
39 main goal
40 maximum
41 medium
42 natural frequencies
43 network
44 oscillator
45 overall response
46 path
47 patterns
48 perturbation frequency
49 perturbation propagates
50 perturbation signal
51 perturbations
52 phase
53 phase oscillators
54 phenomenon
55 place
56 propagates
57 propagation
58 propagation of perturbations
59 random networks
60 regime
61 resonant
62 response
63 results
64 signals
65 speed
66 structure
67 synchronization
68 synchronized phase
69 system
70 terms
71 schema:name Disturbing synchronization: Propagation of perturbations in networks of coupled oscillators
72 schema:pagination 97-108
73 schema:productId N6c784edb282d4b4fa2f600072ccdd7db
74 Nfe025c5aa8204bb3804174839c479eb1
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020578213
76 https://doi.org/10.1140/epjb/e2005-00032-8
77 schema:sdDatePublished 2022-05-20T07:23
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N91a96bb584ec470abeca8fc027f18309
80 schema:url https://doi.org/10.1140/epjb/e2005-00032-8
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N1edd43f2c3bc476a90d93174341922a6 schema:issueNumber 1
85 rdf:type schema:PublicationIssue
86 N66f5de2ec8fd449d83c1090289d5f7cb rdf:first sg:person.0673125037.10
87 rdf:rest rdf:nil
88 N6c784edb282d4b4fa2f600072ccdd7db schema:name dimensions_id
89 schema:value pub.1020578213
90 rdf:type schema:PropertyValue
91 N91a96bb584ec470abeca8fc027f18309 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Ned7ef9a815534891926e25689585a061 schema:volumeNumber 43
94 rdf:type schema:PublicationVolume
95 Nfe025c5aa8204bb3804174839c479eb1 schema:name doi
96 schema:value 10.1140/epjb/e2005-00032-8
97 rdf:type schema:PropertyValue
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 sg:journal.1129956 schema:issn 1155-4304
105 1286-4862
106 schema:name The European Physical Journal B
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.0673125037.10 schema:affiliation grid-institutes:grid.423606.5
110 schema:familyName Zanette
111 schema:givenName D. H.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673125037.10
113 rdf:type schema:Person
114 sg:pub.10.1007/978-1-4757-3484-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001930010
115 https://doi.org/10.1007/978-1-4757-3484-3
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-3-642-69689-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004761286
118 https://doi.org/10.1007/978-3-642-69689-3
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-3-642-97294-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018310459
121 https://doi.org/10.1007/978-3-642-97294-2
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/338334a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017767690
124 https://doi.org/10.1038/338334a0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/scientificamerican0576-74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056542049
127 https://doi.org/10.1038/scientificamerican0576-74
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/scientificamerican1293-102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056645247
130 https://doi.org/10.1038/scientificamerican1293-102
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.423606.5 schema:alternateName Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina
133 schema:name Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...