Finite temperature properties and frustrated ferromagnetism in a square lattice Heisenberg model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-04

AUTHORS

N. Shannon, B. Schmidt, K. Penc, P. Thalmeier

ABSTRACT

The spin 1/2 Heisenberg model on a square lattice with antiferromagnetic nearest- and next-nearest neighbour interactions (the J1-J2 model) has long been studied as a paradigm of a two-dimensional frustrated quantum magnet. Only very recently, however, have the first experimental realisations of such systems been synthesized. The newest material, Pb2VO(PO4)2 seems to have mixed ferro- and antiferromagnetic exchange couplings. In the light of this, we extend the semiclassical treatment of the J1-J2 model to include ferromagnetic interactions, and present an analysis of the finite temperature properties of the model based on the exact diagonalization of 8, 16 and 20 site clusters. We propose that diffuse neutron scattering can be used to resolve the ambiguity inherent in determining the ratio and sign of J1 and J2 from thermodynamic properties alone, and use a finite temperature Lanczos algorithm to make predictions for the relevant high temperature spin-spin correlation functions. The possibility of a spin-liquid phase occurring for ferromagnetic J1 is also briefly discussed. More... »

PAGES

599-616

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2004-00156-3

DOI

http://dx.doi.org/10.1140/epjb/e2004-00156-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018927738


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CEA Saclay", 
          "id": "https://www.grid.ac/institutes/grid.457334.2", 
          "name": [
            "SPEC, CEA Saclay, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shannon", 
        "givenName": "N.", 
        "id": "sg:person.010440230075.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010440230075.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Chemische Physik fester Stoffe, N\u00f6thnitzer Str. 40, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "B.", 
        "id": "sg:person.014207120626.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207120626.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Institute for Solid State Physics and Optics", 
          "id": "https://www.grid.ac/institutes/grid.419115.9", 
          "name": [
            "Research Institute of Solid State Physics and Optics, P.O.B. 49, 1525, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penc", 
        "givenName": "K.", 
        "id": "sg:person.01313524743.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313524743.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Chemische Physik fester Stoffe, N\u00f6thnitzer Str. 40, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thalmeier", 
        "givenName": "P.", 
        "id": "sg:person.015501240375.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-3697(59)90231-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015987475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(59)90231-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015987475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.104420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017434321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.104420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017434321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00011085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017608423", 
          "https://doi.org/10.1007/pl00011085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510170273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017917618", 
          "https://doi.org/10.1007/s100510170273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0025-5408(98)00122-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018032549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.113409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018309105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.113409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018309105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021555782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021555782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.7278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021839119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.7278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021839119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.177202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025417246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.177202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025417246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026356951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.4558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026356951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.3620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033352719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.3620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033352719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/000187300243381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036936366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.024409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046026333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.024409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046026333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047459223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047459223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.186405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049412461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.186405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049412461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2002-00186-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052435021", 
          "https://doi.org/10.1140/epjb/e2002-00186-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jp1:1996236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056974468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/19/33/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058963397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.83.1260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.83.1260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.86.694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.86.694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.9335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060548343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.9335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060548343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.4744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.4744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.10763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060562531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.10763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060562531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.11115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060588969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.11115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060588969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.014416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.014416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.2056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.2056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.2483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.2483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.58.1027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063110869"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-04", 
    "datePublishedReg": "2004-04-01", 
    "description": "The spin 1/2 Heisenberg model on a square lattice with antiferromagnetic nearest- and next-nearest neighbour interactions (the J1-J2 model) has long been studied as a paradigm of a two-dimensional frustrated quantum magnet. Only very recently, however, have the first experimental realisations of such systems been synthesized. The newest material, Pb2VO(PO4)2 seems to have mixed ferro- and antiferromagnetic exchange couplings. In the light of this, we extend the semiclassical treatment of the J1-J2 model to include ferromagnetic interactions, and present an analysis of the finite temperature properties of the model based on the exact diagonalization of 8, 16 and 20 site clusters. We propose that diffuse neutron scattering can be used to resolve the ambiguity inherent in determining the ratio and sign of J1 and J2 from thermodynamic properties alone, and use a finite temperature Lanczos algorithm to make predictions for the relevant high temperature spin-spin correlation functions. The possibility of a spin-liquid phase occurring for ferromagnetic J1 is also briefly discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2004-00156-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Finite temperature properties and frustrated ferromagnetism in a square lattice Heisenberg model", 
    "pagination": "599-616", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5a2f1f7c1fdba9a357b355cee789b61d3504fa5486fd8e9e6fb756181622af82"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2004-00156-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018927738"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2004-00156-3", 
      "https://app.dimensions.ai/details/publication/pub.1018927738"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140/epjb/e2004-00156-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2004-00156-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2004-00156-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2004-00156-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2004-00156-3'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2004-00156-3 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nf9b6a1855db54aa8a168b2ffea41f5be
4 schema:citation sg:pub.10.1007/pl00011085
5 sg:pub.10.1007/s100510170273
6 sg:pub.10.1140/epjb/e2002-00186-9
7 https://doi.org/10.1016/0022-3697(59)90231-8
8 https://doi.org/10.1016/s0025-5408(98)00122-6
9 https://doi.org/10.1051/jp1:1996236
10 https://doi.org/10.1080/000187300243381
11 https://doi.org/10.1088/0022-3719/19/33/011
12 https://doi.org/10.1103/physrev.83.1260
13 https://doi.org/10.1103/physrev.86.694
14 https://doi.org/10.1103/physrevb.38.9335
15 https://doi.org/10.1103/physrevb.39.4744
16 https://doi.org/10.1103/physrevb.44.285
17 https://doi.org/10.1103/physrevb.46.10763
18 https://doi.org/10.1103/physrevb.55.3620
19 https://doi.org/10.1103/physrevb.58.11115
20 https://doi.org/10.1103/physrevb.60.7278
21 https://doi.org/10.1103/physrevb.63.104420
22 https://doi.org/10.1103/physrevb.64.024409
23 https://doi.org/10.1103/physrevb.67.014416
24 https://doi.org/10.1103/physrevb.68.113409
25 https://doi.org/10.1103/physrevlett.62.2056
26 https://doi.org/10.1103/physrevlett.64.88
27 https://doi.org/10.1103/physrevlett.65.1072
28 https://doi.org/10.1103/physrevlett.69.2590
29 https://doi.org/10.1103/physrevlett.70.2483
30 https://doi.org/10.1103/physrevlett.80.4558
31 https://doi.org/10.1103/physrevlett.81.1098
32 https://doi.org/10.1103/physrevlett.85.1318
33 https://doi.org/10.1103/physrevlett.88.186405
34 https://doi.org/10.1103/physrevlett.91.177202
35 https://doi.org/10.1143/jpsj.58.1027
36 schema:datePublished 2004-04
37 schema:datePublishedReg 2004-04-01
38 schema:description The spin 1/2 Heisenberg model on a square lattice with antiferromagnetic nearest- and next-nearest neighbour interactions (the J1-J2 model) has long been studied as a paradigm of a two-dimensional frustrated quantum magnet. Only very recently, however, have the first experimental realisations of such systems been synthesized. The newest material, Pb2VO(PO4)2 seems to have mixed ferro- and antiferromagnetic exchange couplings. In the light of this, we extend the semiclassical treatment of the J1-J2 model to include ferromagnetic interactions, and present an analysis of the finite temperature properties of the model based on the exact diagonalization of 8, 16 and 20 site clusters. We propose that diffuse neutron scattering can be used to resolve the ambiguity inherent in determining the ratio and sign of J1 and J2 from thermodynamic properties alone, and use a finite temperature Lanczos algorithm to make predictions for the relevant high temperature spin-spin correlation functions. The possibility of a spin-liquid phase occurring for ferromagnetic J1 is also briefly discussed.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N2691e274168c4a03b4883996fb0de243
43 N5559feb2d1b14bd0a9ec61292fc15ab2
44 sg:journal.1129956
45 schema:name Finite temperature properties and frustrated ferromagnetism in a square lattice Heisenberg model
46 schema:pagination 599-616
47 schema:productId N498b5b9d2ef5428fa982df2cd5aae959
48 Nac65f9724be644d18931fdebc401945b
49 Nc5842b2a8e694c1c93e94b9ba1fbc507
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018927738
51 https://doi.org/10.1140/epjb/e2004-00156-3
52 schema:sdDatePublished 2019-04-10T21:34
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N14fd1963f41a4374b673a19dc00754a6
55 schema:url http://link.springer.com/10.1140/epjb/e2004-00156-3
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0f9b3b4c47a8444ab4c4525f3a0a9998 rdf:first sg:person.01313524743.69
60 rdf:rest N43dce98ffccc4eaa92f7ff83cacc6d8a
61 N14fd1963f41a4374b673a19dc00754a6 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N2691e274168c4a03b4883996fb0de243 schema:volumeNumber 38
64 rdf:type schema:PublicationVolume
65 N43dce98ffccc4eaa92f7ff83cacc6d8a rdf:first sg:person.015501240375.83
66 rdf:rest rdf:nil
67 N498b5b9d2ef5428fa982df2cd5aae959 schema:name doi
68 schema:value 10.1140/epjb/e2004-00156-3
69 rdf:type schema:PropertyValue
70 N5559feb2d1b14bd0a9ec61292fc15ab2 schema:issueNumber 4
71 rdf:type schema:PublicationIssue
72 Nac65f9724be644d18931fdebc401945b schema:name dimensions_id
73 schema:value pub.1018927738
74 rdf:type schema:PropertyValue
75 Nc5842b2a8e694c1c93e94b9ba1fbc507 schema:name readcube_id
76 schema:value 5a2f1f7c1fdba9a357b355cee789b61d3504fa5486fd8e9e6fb756181622af82
77 rdf:type schema:PropertyValue
78 Nd57a5027b0254d5faae723b479ed2876 rdf:first sg:person.014207120626.15
79 rdf:rest N0f9b3b4c47a8444ab4c4525f3a0a9998
80 Nf9b6a1855db54aa8a168b2ffea41f5be rdf:first sg:person.010440230075.80
81 rdf:rest Nd57a5027b0254d5faae723b479ed2876
82 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
86 schema:name Other Physical Sciences
87 rdf:type schema:DefinedTerm
88 sg:journal.1129956 schema:issn 1155-4304
89 1286-4862
90 schema:name The European Physical Journal B
91 rdf:type schema:Periodical
92 sg:person.010440230075.80 schema:affiliation https://www.grid.ac/institutes/grid.457334.2
93 schema:familyName Shannon
94 schema:givenName N.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010440230075.80
96 rdf:type schema:Person
97 sg:person.01313524743.69 schema:affiliation https://www.grid.ac/institutes/grid.419115.9
98 schema:familyName Penc
99 schema:givenName K.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313524743.69
101 rdf:type schema:Person
102 sg:person.014207120626.15 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
103 schema:familyName Schmidt
104 schema:givenName B.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207120626.15
106 rdf:type schema:Person
107 sg:person.015501240375.83 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
108 schema:familyName Thalmeier
109 schema:givenName P.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83
111 rdf:type schema:Person
112 sg:pub.10.1007/pl00011085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017608423
113 https://doi.org/10.1007/pl00011085
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s100510170273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017917618
116 https://doi.org/10.1007/s100510170273
117 rdf:type schema:CreativeWork
118 sg:pub.10.1140/epjb/e2002-00186-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052435021
119 https://doi.org/10.1140/epjb/e2002-00186-9
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0022-3697(59)90231-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015987475
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0025-5408(98)00122-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018032549
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1051/jp1:1996236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056974468
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/000187300243381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036936366
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1088/0022-3719/19/33/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058963397
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrev.83.1260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060458001
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrev.86.694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060459283
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevb.38.9335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060548343
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevb.39.4744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060549560
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevb.44.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060559247
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.46.10763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060562531
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.55.3620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033352719
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.58.11115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060588969
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.60.7278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021839119
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.63.104420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017434321
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.64.024409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046026333
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.67.014416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060605393
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.68.113409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018309105
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.62.2056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798684
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.64.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800998
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.65.1072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801057
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.69.2590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805555
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.70.2483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806728
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.80.4558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026356951
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.81.1098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047459223
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.85.1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021555782
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.88.186405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049412461
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.91.177202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025417246
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1143/jpsj.58.1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063110869
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.419115.9 schema:alternateName Research Institute for Solid State Physics and Optics
180 schema:name Research Institute of Solid State Physics and Optics, P.O.B. 49, 1525, Budapest, Hungary
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
183 schema:name Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187, Dresden, Germany
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.457334.2 schema:alternateName CEA Saclay
186 schema:name SPEC, CEA Saclay, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...