2-Dimensional polymers confined in a strip View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-11

AUTHORS

H.-P. Hsu, P. Grassberger

ABSTRACT

Single two dimensional polymers confined to a strip are studied by Monte Carlo simulations. They are described by N-step self-avoiding random walks on a square lattice between two parallel hard walls with distance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1 \ll D \ll N^\nu$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu = 3/4$\end{document} is the Flory exponent). For the simulations we employ the pruned-enriched-Rosenbluth method (PERM) with Markovian anticipation. We measure the densities of monomers and of end points as functions of the distance from the walls, the longitudinal extent of the chain, and the forces exerted on the walls. Their scaling with D and the universal ratio between force and monomer density at the wall are compared to theoretical predictions. More... »

PAGES

209-214

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2003-00337-6

DOI

http://dx.doi.org/10.1140/epjb/e2003-00337-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047836310


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "John-von-Neumann Institute for Computing, Forschungszentrum J\u00fclich, 52425, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsu", 
        "givenName": "H.-P.", 
        "id": "sg:person.01116326376.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116326376.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "John-von-Neumann Institute for Computing, Forschungszentrum J\u00fclich, 52425, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grassberger", 
        "givenName": "P.", 
        "id": "sg:person.0704113004.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0305-4470/32/16/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023688660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(93)90525-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041637511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(93)90525-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041637511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510050338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049043058", 
          "https://doi.org/10.1007/s100510050338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02178552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050965010", 
          "https://doi.org/10.1007/bf02178552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02178552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050965010", 
          "https://doi.org/10.1007/bf02178552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:01980004106057900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056990310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1741967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057804419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.449786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058027805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.461734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058039745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.3116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.3116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.3682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060721405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.3682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060721405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.5833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060723807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.5833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060723807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.5284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.5284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2000-00335-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064235820"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-11", 
    "datePublishedReg": "2003-11-01", 
    "description": "Single two dimensional polymers confined to a strip are studied by Monte Carlo simulations. They are described by N-step self-avoiding random walks on a square lattice between two parallel hard walls with distance \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$1 \\ll D \\ll N^\\nu$\\end{document} (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\nu = 3/4$\\end{document} is the Flory exponent). For the simulations we employ the pruned-enriched-Rosenbluth method (PERM) with Markovian anticipation. We measure the densities of monomers and of end points as functions of the distance from the walls, the longitudinal extent of the chain, and the forces exerted on the walls. Their scaling with D and the universal ratio between force and monomer density at the wall are compared to theoretical predictions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2003-00337-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "2-Dimensional polymers confined in a strip", 
    "pagination": "209-214", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e3e14e785d7e8024a780e16e842974a7ff4e571c58902609505a311be0cc333b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2003-00337-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047836310"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2003-00337-6", 
      "https://app.dimensions.ai/details/publication/pub.1047836310"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140/epjb/e2003-00337-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2003-00337-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2003-00337-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2003-00337-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2003-00337-6'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2003-00337-6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0d9b71957ae74fe09bf5b9e99424e478
4 schema:citation sg:pub.10.1007/bf02178552
5 sg:pub.10.1007/s100510050338
6 https://doi.org/10.1016/0550-3213(93)90525-t
7 https://doi.org/10.1051/jphys:01980004106057900
8 https://doi.org/10.1063/1.1741967
9 https://doi.org/10.1063/1.449786
10 https://doi.org/10.1063/1.461734
11 https://doi.org/10.1088/0305-4470/32/16/004
12 https://doi.org/10.1103/physreve.55.3116
13 https://doi.org/10.1103/physreve.56.3682
14 https://doi.org/10.1103/physreve.59.5833
15 https://doi.org/10.1103/physrevlett.77.5284
16 https://doi.org/10.1209/epl/i2000-00335-x
17 schema:datePublished 2003-11
18 schema:datePublishedReg 2003-11-01
19 schema:description Single two dimensional polymers confined to a strip are studied by Monte Carlo simulations. They are described by N-step self-avoiding random walks on a square lattice between two parallel hard walls with distance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1 \ll D \ll N^\nu$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu = 3/4$\end{document} is the Flory exponent). For the simulations we employ the pruned-enriched-Rosenbluth method (PERM) with Markovian anticipation. We measure the densities of monomers and of end points as functions of the distance from the walls, the longitudinal extent of the chain, and the forces exerted on the walls. Their scaling with D and the universal ratio between force and monomer density at the wall are compared to theoretical predictions.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N3a7cd225443745c1a52995eeb68d8f4b
24 N97afe13f2f874687ac119cc69cef6f04
25 sg:journal.1129956
26 schema:name 2-Dimensional polymers confined in a strip
27 schema:pagination 209-214
28 schema:productId N4925657240fc4a1c9950f45739e2422b
29 Nd0feb53446094a1896623bb6edb1c9bd
30 Nfb724f0b803149c1be55acc837d18500
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047836310
32 https://doi.org/10.1140/epjb/e2003-00337-6
33 schema:sdDatePublished 2019-04-10T19:54
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nff4ec9f0d3ec424ca60e5a02f4c29dd7
36 schema:url http://link.springer.com/10.1140/epjb/e2003-00337-6
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N0d9b71957ae74fe09bf5b9e99424e478 rdf:first sg:person.01116326376.78
41 rdf:rest Ncbd603f7046841dda726f2828f248b6b
42 N3a7cd225443745c1a52995eeb68d8f4b schema:issueNumber 2
43 rdf:type schema:PublicationIssue
44 N4925657240fc4a1c9950f45739e2422b schema:name readcube_id
45 schema:value e3e14e785d7e8024a780e16e842974a7ff4e571c58902609505a311be0cc333b
46 rdf:type schema:PropertyValue
47 N97afe13f2f874687ac119cc69cef6f04 schema:volumeNumber 36
48 rdf:type schema:PublicationVolume
49 Ncbd603f7046841dda726f2828f248b6b rdf:first sg:person.0704113004.84
50 rdf:rest rdf:nil
51 Nd0feb53446094a1896623bb6edb1c9bd schema:name dimensions_id
52 schema:value pub.1047836310
53 rdf:type schema:PropertyValue
54 Nfb724f0b803149c1be55acc837d18500 schema:name doi
55 schema:value 10.1140/epjb/e2003-00337-6
56 rdf:type schema:PropertyValue
57 Nff4ec9f0d3ec424ca60e5a02f4c29dd7 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
60 schema:name Information and Computing Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
63 schema:name Artificial Intelligence and Image Processing
64 rdf:type schema:DefinedTerm
65 sg:journal.1129956 schema:issn 1155-4304
66 1286-4862
67 schema:name The European Physical Journal B
68 rdf:type schema:Periodical
69 sg:person.01116326376.78 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
70 schema:familyName Hsu
71 schema:givenName H.-P.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116326376.78
73 rdf:type schema:Person
74 sg:person.0704113004.84 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
75 schema:familyName Grassberger
76 schema:givenName P.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704113004.84
78 rdf:type schema:Person
79 sg:pub.10.1007/bf02178552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050965010
80 https://doi.org/10.1007/bf02178552
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/s100510050338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049043058
83 https://doi.org/10.1007/s100510050338
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0550-3213(93)90525-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1041637511
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1051/jphys:01980004106057900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056990310
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1063/1.1741967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057804419
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1063/1.449786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058027805
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1063/1.461734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058039745
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1088/0305-4470/32/16/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023688660
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physreve.55.3116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060720562
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physreve.56.3682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060721405
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physreve.59.5833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060723807
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevlett.77.5284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814500
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1209/epl/i2000-00335-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1064235820
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.8385.6 schema:alternateName Forschungszentrum Jülich
108 schema:name John-von-Neumann Institute for Computing, Forschungszentrum Jülich, 52425, Jülich, Germany
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...