On the Parisi-Toulouse hypothesis for the spin glass phase in mean-field theory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-05

AUTHORS

A. Crisanti, T. Rizzo, T. Temesvari

ABSTRACT

We consider the spin-glass phase of the Sherrington-Kirkpatrick model in the presence of a magnetic field. The series expansion of the Parisi function q(x) is computed at high orders in powers of τ = Tc - T and H. We find that none of the Parisi-Toulouse scaling hypotheses on the q(x) behavior strictly holds, although some of them are violated only at high orders. The series is resummed yielding results in the whole spin-glass phase which are compared with those from a numerical evaluation of the q(x). At the high order considered, the transition turns out to be third order on the Almeida-Thouless line, a result which is confirmed rigorously computing the expansion of the solution near the line at finite τ. The transition becomes smoother for infinitesimally small field while it is third order at strictly zero field. More... »

PAGES

203-207

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2003-00157-8

DOI

http://dx.doi.org/10.1140/epjb/e2003-00157-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034188197


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, Istituto Nazionale Fisica della Materia Unit\u00e0 di Roma I and SMC, P.le Aldo Moro 2, 00185 Roma, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crisanti", 
        "givenName": "A.", 
        "id": "sg:person.01034617712.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034617712.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "SMC-INFM, Dipartimento di Fisica, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, P.le Aldo Moro 2, 00185 Roma, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rizzo", 
        "givenName": "T.", 
        "id": "sg:person.01275116732.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275116732.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "E\u00f6tv\u00f6s Lor\u00e1nd University", 
          "id": "https://www.grid.ac/institutes/grid.5591.8", 
          "name": [
            "HAS Research Group for Theoretical Physics, E\u00f6tv\u00f6s University, P\u00e1zm\u00e1ny P\u00e9ter s\u00e9t\u00e1ny 1/A, 1117 Budapest, Hungary, HU"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Temesvari", 
        "givenName": "T.", 
        "id": "sg:person.0641203056.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641203056.34"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-05", 
    "datePublishedReg": "2003-05-01", 
    "description": "We consider the spin-glass phase of the Sherrington-Kirkpatrick model in the presence of a magnetic field. The series expansion of the Parisi function q(x) is computed at high orders in powers of \u03c4 = Tc - T and H. We find that none of the Parisi-Toulouse scaling hypotheses on the q(x) behavior strictly holds, although some of them are violated only at high orders. The series is resummed yielding results in the whole spin-glass phase which are compared with those from a numerical evaluation of the q(x). At the high order considered, the transition turns out to be third order on the Almeida-Thouless line, a result which is confirmed rigorously computing the expansion of the solution near the line at finite \u03c4. The transition becomes smoother for infinitesimally small field while it is third order at strictly zero field.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2003-00157-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "On the Parisi-Toulouse hypothesis for the spin glass phase in mean-field theory", 
    "pagination": "203-207", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a2dc74431dfc2c8b94fda1c00a395967940a7f11551941ea794b92b3977ceb6f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2003-00157-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034188197"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2003-00157-8", 
      "https://app.dimensions.ai/details/publication/pub.1034188197"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140/epjb/e2003-00157-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2003-00157-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2003-00157-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2003-00157-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2003-00157-8'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2003-00157-8 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N227fdc9240e84606b1e8812b9f15a09a
4 schema:datePublished 2003-05
5 schema:datePublishedReg 2003-05-01
6 schema:description We consider the spin-glass phase of the Sherrington-Kirkpatrick model in the presence of a magnetic field. The series expansion of the Parisi function q(x) is computed at high orders in powers of τ = Tc - T and H. We find that none of the Parisi-Toulouse scaling hypotheses on the q(x) behavior strictly holds, although some of them are violated only at high orders. The series is resummed yielding results in the whole spin-glass phase which are compared with those from a numerical evaluation of the q(x). At the high order considered, the transition turns out to be third order on the Almeida-Thouless line, a result which is confirmed rigorously computing the expansion of the solution near the line at finite τ. The transition becomes smoother for infinitesimally small field while it is third order at strictly zero field.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf Nd78deb27297c4cc597d59fdc681b8653
11 Nf2fd32cc9ebd4e2c959be27b883a2ffa
12 sg:journal.1129956
13 schema:name On the Parisi-Toulouse hypothesis for the spin glass phase in mean-field theory
14 schema:pagination 203-207
15 schema:productId N3a0ef7c955cd4543b536093ed39c53bb
16 N99bcab8d73734e4bafb5fa04259906d9
17 Nd55f287dfbf24abcb3051a1051e75c30
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034188197
19 https://doi.org/10.1140/epjb/e2003-00157-8
20 schema:sdDatePublished 2019-04-10T22:29
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nb3f989440aeb40199b2a657dc24e55d7
23 schema:url http://link.springer.com/10.1140/epjb/e2003-00157-8
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N227fdc9240e84606b1e8812b9f15a09a rdf:first sg:person.01034617712.80
28 rdf:rest Ncef79b63f6bb4f48a14be25cfcd3eb96
29 N3a0ef7c955cd4543b536093ed39c53bb schema:name readcube_id
30 schema:value a2dc74431dfc2c8b94fda1c00a395967940a7f11551941ea794b92b3977ceb6f
31 rdf:type schema:PropertyValue
32 N99bcab8d73734e4bafb5fa04259906d9 schema:name dimensions_id
33 schema:value pub.1034188197
34 rdf:type schema:PropertyValue
35 Nb3f989440aeb40199b2a657dc24e55d7 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 Ncd5537cc496a4814ac95418291e3937e rdf:first sg:person.0641203056.34
38 rdf:rest rdf:nil
39 Ncef79b63f6bb4f48a14be25cfcd3eb96 rdf:first sg:person.01275116732.83
40 rdf:rest Ncd5537cc496a4814ac95418291e3937e
41 Nd55f287dfbf24abcb3051a1051e75c30 schema:name doi
42 schema:value 10.1140/epjb/e2003-00157-8
43 rdf:type schema:PropertyValue
44 Nd78deb27297c4cc597d59fdc681b8653 schema:issueNumber 2
45 rdf:type schema:PublicationIssue
46 Nf2fd32cc9ebd4e2c959be27b883a2ffa schema:volumeNumber 33
47 rdf:type schema:PublicationVolume
48 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
49 schema:name Physical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
52 schema:name Other Physical Sciences
53 rdf:type schema:DefinedTerm
54 sg:journal.1129956 schema:issn 1155-4304
55 1286-4862
56 schema:name The European Physical Journal B
57 rdf:type schema:Periodical
58 sg:person.01034617712.80 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
59 schema:familyName Crisanti
60 schema:givenName A.
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034617712.80
62 rdf:type schema:Person
63 sg:person.01275116732.83 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
64 schema:familyName Rizzo
65 schema:givenName T.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275116732.83
67 rdf:type schema:Person
68 sg:person.0641203056.34 schema:affiliation https://www.grid.ac/institutes/grid.5591.8
69 schema:familyName Temesvari
70 schema:givenName T.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641203056.34
72 rdf:type schema:Person
73 https://www.grid.ac/institutes/grid.5591.8 schema:alternateName Eötvös Loránd University
74 schema:name HAS Research Group for Theoretical Physics, Eötvös University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary, HU
75 rdf:type schema:Organization
76 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
77 schema:name Dipartimento di Fisica, Università di Roma “La Sapienza”, Istituto Nazionale Fisica della Materia Unità di Roma I and SMC, P.le Aldo Moro 2, 00185 Roma, Italy, IT
78 SMC-INFM, Dipartimento di Fisica, Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185 Roma, Italy, IT
79 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...