Magnetoconductance of a two-dimensional metal in the presence of spin-orbit coupling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-02

AUTHORS

P. Schwab, R. Raimondi

ABSTRACT

: We show that in the metallic phase of a two dimensional electron gas the spin-orbit coupling due to structure inversion asymmetry leads to a characteristic anisotropy in the magnetoconductance. Within the assumption that the metallic phase can be described by a Fermi liquid, we compute the conductivity in the presence of an in-plane magnetic field. Both the spin-orbit coupling and the Zeeman coupling with the magnetic field give rise to two spin subbands, in terms of which most of the transport properties can be discussed. The strongest conductivity anisotropy occurs for Zeeman energies of the order of the Fermi energy corresponding to the depopulation of the upper spin subband. The energy scale associated with the spin-orbit coupling controls the strength of the effect. More in particular, we find that the detailed behavior and the sign of the anisotropy depends on the underlying scattering mechanism. Assuming small angle scattering to be the dominant scattering mechanism our results agree with recent measurement on Si-MOSFET's in the vicinity of the metal-insulator transition. More... »

PAGES

483-495

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e20020054

DOI

http://dx.doi.org/10.1140/epjb/e20020054

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016663278


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, 86135 Augsburg, Germany, DE", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Augsburg, 86135 Augsburg, Germany, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwab", 
        "givenName": "P.", 
        "id": "sg:person.0673646015.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673646015.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NEST-INFM e Dipartimento di Fisica, Universit\u00e0 di Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy, IT", 
          "id": "http://www.grid.ac/institutes/grid.8509.4", 
          "name": [
            "NEST-INFM e Dipartimento di Fisica, Universit\u00e0 di Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raimondi", 
        "givenName": "R.", 
        "id": "sg:person.01131723424.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131723424.64"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-02", 
    "datePublishedReg": "2002-02-01", 
    "description": "Abstract: We show that in the metallic phase of a two dimensional electron gas the spin-orbit coupling due to structure inversion asymmetry leads to a characteristic anisotropy in the magnetoconductance. Within the assumption that the metallic phase can be described by a Fermi liquid, we compute the conductivity in the presence of an in-plane magnetic field. Both the spin-orbit coupling and the Zeeman coupling with the magnetic field give rise to two spin subbands, in terms of which most of the transport properties can be discussed. The strongest conductivity anisotropy occurs for Zeeman energies of the order of the Fermi energy corresponding to the depopulation of the upper spin subband. The energy scale associated with the spin-orbit coupling controls the strength of the effect. More in particular, we find that the detailed behavior and the sign of the anisotropy depends on the underlying scattering mechanism. Assuming small angle scattering to be the dominant scattering mechanism our results agree with recent measurement on Si-MOSFET's in the vicinity of the metal-insulator transition.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjb/e20020054", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "keywords": [
      "spin-orbit coupling", 
      "spin subbands", 
      "magnetic field", 
      "scattering mechanism", 
      "metallic phase", 
      "plane magnetic field", 
      "structure inversion asymmetry", 
      "dimensional electron gas", 
      "upper spin subband", 
      "metal-insulator transition", 
      "dominant scattering mechanism", 
      "two-dimensional metals", 
      "inversion asymmetry", 
      "electron gas", 
      "Zeeman energy", 
      "Fermi liquid", 
      "Fermi energy", 
      "energy scale", 
      "recent measurements", 
      "underlying scattering mechanisms", 
      "characteristic anisotropy", 
      "transport properties", 
      "small angle", 
      "magnetoconductance", 
      "coupling", 
      "anisotropy", 
      "Si MOSFET", 
      "subbands", 
      "energy", 
      "detailed behavior", 
      "Zeeman", 
      "field", 
      "conductivity anisotropy", 
      "transition", 
      "gas", 
      "phase", 
      "depopulation", 
      "measurements", 
      "vicinity", 
      "asymmetry", 
      "angle", 
      "liquid", 
      "properties", 
      "conductivity", 
      "metals", 
      "mechanism", 
      "presence", 
      "order", 
      "strength", 
      "scale", 
      "rise", 
      "terms", 
      "behavior", 
      "effect", 
      "assumption", 
      "results", 
      "signs"
    ], 
    "name": "Magnetoconductance of a two-dimensional metal in the presence of spin-orbit coupling", 
    "pagination": "483-495", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016663278"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e20020054"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e20020054", 
      "https://app.dimensions.ai/details/publication/pub.1016663278"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_355.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjb/e20020054"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e20020054'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e20020054'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e20020054'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e20020054'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      83 URIs      75 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e20020054 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N9c5a0f7c14bc4be4b96877e814cae925
4 schema:datePublished 2002-02
5 schema:datePublishedReg 2002-02-01
6 schema:description Abstract: We show that in the metallic phase of a two dimensional electron gas the spin-orbit coupling due to structure inversion asymmetry leads to a characteristic anisotropy in the magnetoconductance. Within the assumption that the metallic phase can be described by a Fermi liquid, we compute the conductivity in the presence of an in-plane magnetic field. Both the spin-orbit coupling and the Zeeman coupling with the magnetic field give rise to two spin subbands, in terms of which most of the transport properties can be discussed. The strongest conductivity anisotropy occurs for Zeeman energies of the order of the Fermi energy corresponding to the depopulation of the upper spin subband. The energy scale associated with the spin-orbit coupling controls the strength of the effect. More in particular, we find that the detailed behavior and the sign of the anisotropy depends on the underlying scattering mechanism. Assuming small angle scattering to be the dominant scattering mechanism our results agree with recent measurement on Si-MOSFET's in the vicinity of the metal-insulator transition.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N3914e474cb684b6997926eb9a7d3088c
11 Nc1546dd3c46043c18822eac531c51d8d
12 sg:journal.1129956
13 schema:keywords Fermi energy
14 Fermi liquid
15 Si MOSFET
16 Zeeman
17 Zeeman energy
18 angle
19 anisotropy
20 assumption
21 asymmetry
22 behavior
23 characteristic anisotropy
24 conductivity
25 conductivity anisotropy
26 coupling
27 depopulation
28 detailed behavior
29 dimensional electron gas
30 dominant scattering mechanism
31 effect
32 electron gas
33 energy
34 energy scale
35 field
36 gas
37 inversion asymmetry
38 liquid
39 magnetic field
40 magnetoconductance
41 measurements
42 mechanism
43 metal-insulator transition
44 metallic phase
45 metals
46 order
47 phase
48 plane magnetic field
49 presence
50 properties
51 recent measurements
52 results
53 rise
54 scale
55 scattering mechanism
56 signs
57 small angle
58 spin subbands
59 spin-orbit coupling
60 strength
61 structure inversion asymmetry
62 subbands
63 terms
64 transition
65 transport properties
66 two-dimensional metals
67 underlying scattering mechanisms
68 upper spin subband
69 vicinity
70 schema:name Magnetoconductance of a two-dimensional metal in the presence of spin-orbit coupling
71 schema:pagination 483-495
72 schema:productId N48c93c8d9aeb46279adf91bc85cf5e66
73 N7afa5fa099604fa49d5496a2828c373c
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016663278
75 https://doi.org/10.1140/epjb/e20020054
76 schema:sdDatePublished 2022-06-01T22:04
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N9b9515a9069f445c992c9d914f5f8eed
79 schema:url https://doi.org/10.1140/epjb/e20020054
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N3914e474cb684b6997926eb9a7d3088c schema:volumeNumber 25
84 rdf:type schema:PublicationVolume
85 N48c93c8d9aeb46279adf91bc85cf5e66 schema:name doi
86 schema:value 10.1140/epjb/e20020054
87 rdf:type schema:PropertyValue
88 N7afa5fa099604fa49d5496a2828c373c schema:name dimensions_id
89 schema:value pub.1016663278
90 rdf:type schema:PropertyValue
91 N9b9515a9069f445c992c9d914f5f8eed schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N9c5a0f7c14bc4be4b96877e814cae925 rdf:first sg:person.0673646015.04
94 rdf:rest Ne490f7c35ba541b2a411742d7bb11cd1
95 Nc1546dd3c46043c18822eac531c51d8d schema:issueNumber 4
96 rdf:type schema:PublicationIssue
97 Ne490f7c35ba541b2a411742d7bb11cd1 rdf:first sg:person.01131723424.64
98 rdf:rest rdf:nil
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
103 schema:name Physical Sciences
104 rdf:type schema:DefinedTerm
105 sg:journal.1129956 schema:issn 1155-4304
106 1286-4862
107 schema:name The European Physical Journal B
108 schema:publisher Springer Nature
109 rdf:type schema:Periodical
110 sg:person.01131723424.64 schema:affiliation grid-institutes:grid.8509.4
111 schema:familyName Raimondi
112 schema:givenName R.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131723424.64
114 rdf:type schema:Person
115 sg:person.0673646015.04 schema:affiliation grid-institutes:grid.7307.3
116 schema:familyName Schwab
117 schema:givenName P.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673646015.04
119 rdf:type schema:Person
120 grid-institutes:grid.7307.3 schema:alternateName Institut für Physik, Universität Augsburg, 86135 Augsburg, Germany, DE
121 schema:name Institut für Physik, Universität Augsburg, 86135 Augsburg, Germany, DE
122 rdf:type schema:Organization
123 grid-institutes:grid.8509.4 schema:alternateName NEST-INFM e Dipartimento di Fisica, Università di Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy, IT
124 schema:name NEST-INFM e Dipartimento di Fisica, Università di Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy, IT
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...