Experimental determination of reference pulses for highly segmented HPGe detectors and application to Pulse Shape Analysis used in γ-ray tracking ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

H. J. Li, J. Ljungvall, C. Michelagnoli, E. Clément, J. Dudouet, P. Désesquelles, A. Lopez-Martens, G. de France

ABSTRACT

For the first time, bases of signals delivered by highly segmented HPGe detectors, for identified hit locations, have been determined in situ, that is in the actual accelerator-target-detection system conditions corresponding to data acquisition during a physics experiment. As a consequence, these bases include all the genuine features and alterations of the signals induced by the experimental setup, e.g. diaphony, electronic response, specificity of individual crystals. The present pulse shape bases were constructed using calibration source data taken at the beginning of the AGATA campaign at GANIL. An experiment performed at GANIL using the AGATA γ-ray detector together with the VAMOS spectrometer was used to validate the bases. The performance of the bases when used for pulse-shape analysis has been compared to the performance of the standard bases, composed of pulse shapes generated by a computer simulation used for AGATA. This is done by comparing the Doppler correction capability. The so-called Jacobian method used to generate the in situ bases also produces correlations that can be applied to locate in a direct way (no search algorithm) the location where a γ-ray interacted given that only one segment is hit. As about 50% of all pulse-shape analysis is performed on crystals with only one segment hit this will allow for a large reduction in the needed computer power. Different ways to improve the results of this prospective work are discussed. More... »

PAGES

198

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epja/i2018-12636-9

DOI

http://dx.doi.org/10.1140/epja/i2018-12636-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110208975


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Large Heavy Ion National Accelerator", 
          "id": "https://www.grid.ac/institutes/grid.72943.3b", 
          "name": [
            "GANIL, CEA/DRF-CNRS/IN2P3, BP 55027, 14076, Caen Cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "H. J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de Spectrom\u00e9trie Nucl\u00e9aire et de Spectrom\u00e9trie de Masse", 
          "id": "https://www.grid.ac/institutes/grid.462346.1", 
          "name": [
            "CSNSM, Universit\u00e9 Paris-Sud, CNRS/IN2P3, Universit\u00e9 Paris-Saclay, 91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ljungvall", 
        "givenName": "J.", 
        "id": "sg:person.016673645207.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673645207.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Large Heavy Ion National Accelerator", 
          "id": "https://www.grid.ac/institutes/grid.72943.3b", 
          "name": [
            "Institut Laue-Langevin, B.P. 156, F-38042, Grenoble Cedex 9, France", 
            "GANIL, CEA/DRF-CNRS/IN2P3, BP 55027, 14076, Caen Cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michelagnoli", 
        "givenName": "C.", 
        "id": "sg:person.015322477201.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015322477201.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Large Heavy Ion National Accelerator", 
          "id": "https://www.grid.ac/institutes/grid.72943.3b", 
          "name": [
            "GANIL, CEA/DRF-CNRS/IN2P3, BP 55027, 14076, Caen Cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cl\u00e9ment", 
        "givenName": "E.", 
        "id": "sg:person.015230226105.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015230226105.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Claude Bernard University Lyon 1", 
          "id": "https://www.grid.ac/institutes/grid.7849.2", 
          "name": [
            "CSNSM, Universit\u00e9 Paris-Sud, CNRS/IN2P3, Universit\u00e9 Paris-Saclay, 91405, Orsay, France", 
            "Universit\u00e9 Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622, Villeurbanne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dudouet", 
        "givenName": "J.", 
        "id": "sg:person.011004212653.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011004212653.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de Spectrom\u00e9trie Nucl\u00e9aire et de Spectrom\u00e9trie de Masse", 
          "id": "https://www.grid.ac/institutes/grid.462346.1", 
          "name": [
            "CSNSM, Universit\u00e9 Paris-Sud, CNRS/IN2P3, Universit\u00e9 Paris-Saclay, 91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u00e9sesquelles", 
        "givenName": "P.", 
        "id": "sg:person.011563606354.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563606354.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de Spectrom\u00e9trie Nucl\u00e9aire et de Spectrom\u00e9trie de Masse", 
          "id": "https://www.grid.ac/institutes/grid.462346.1", 
          "name": [
            "CSNSM, Universit\u00e9 Paris-Sud, CNRS/IN2P3, Universit\u00e9 Paris-Saclay, 91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lopez-Martens", 
        "givenName": "A.", 
        "id": "sg:person.01076565363.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076565363.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Large Heavy Ion National Accelerator", 
          "id": "https://www.grid.ac/institutes/grid.72943.3b", 
          "name": [
            "GANIL, CEA/DRF-CNRS/IN2P3, BP 55027, 14076, Caen Cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de France", 
        "givenName": "G.", 
        "id": "sg:person.013362525147.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013362525147.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.nima.2006.08.130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000688581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2008.05.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000788140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2013.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004332002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2011.04.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004501174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2012.08.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005256517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2011.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005556554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2015.12.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006466800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2009.01.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009960303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/ndsh.2003.0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011485186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/ndsh.2003.0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011485186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2015.10.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012761660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2006.11.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013866909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2004.08.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018671763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2010.04.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025305608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2008.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026552056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2011.01.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026899784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2007.06.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028704782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9002(99)00188-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032181523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2011.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032310764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysa.2004.09.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032756453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epja/i2016-16070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034039409", 
          "https://doi.org/10.1140/epja/i2016-16070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nimb.2007.04.305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035702166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2011.06.099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036238639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2009.02.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038385412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2008.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039673045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2016.03.094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042555105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2011.02.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045506445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2011.11.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045831006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epja/i2013-13061-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049263416", 
          "https://doi.org/10.1140/epja/i2013-13061-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epja/i2002-10352-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049591032", 
          "https://doi.org/10.1140/epja/i2002-10352-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2011.02.089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050295600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2011.02.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051798961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epja/i2013-13047-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052612914", 
          "https://doi.org/10.1140/epja/i2013-13047-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/epjconf/20146602083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056964008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.62.024614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060672517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.62.024614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060672517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.82.044310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060677664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.82.044310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060677664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epja/i2017-12214-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083758101", 
          "https://doi.org/10.1140/epja/i2017-12214-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epja/i2017-12214-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083758101", 
          "https://doi.org/10.1140/epja/i2017-12214-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2017.02.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083865783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.162501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084868045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.162501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084868045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epja/i2017-12353-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091100373", 
          "https://doi.org/10.1140/epja/i2017-12353-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epja/i2017-12353-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091100373", 
          "https://doi.org/10.1140/epja/i2017-12353-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "For the first time, bases of signals delivered by highly segmented HPGe detectors, for identified hit locations, have been determined in situ, that is in the actual accelerator-target-detection system conditions corresponding to data acquisition during a physics experiment. As a consequence, these bases include all the genuine features and alterations of the signals induced by the experimental setup, e.g. diaphony, electronic response, specificity of individual crystals. The present pulse shape bases were constructed using calibration source data taken at the beginning of the AGATA campaign at GANIL. An experiment performed at GANIL using the AGATA \u03b3-ray detector together with the VAMOS spectrometer was used to validate the bases. The performance of the bases when used for pulse-shape analysis has been compared to the performance of the standard bases, composed of pulse shapes generated by a computer simulation used for AGATA. This is done by comparing the Doppler correction capability. The so-called Jacobian method used to generate the in situ bases also produces correlations that can be applied to locate in a direct way (no search algorithm) the location where a \u03b3-ray interacted given that only one segment is hit. As about 50% of all pulse-shape analysis is performed on crystals with only one segment hit this will allow for a large reduction in the needed computer power. Different ways to improve the results of this prospective work are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epja/i2018-12636-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313769", 
        "issn": [
          "1434-6001", 
          "1434-601X"
        ], 
        "name": "The European Physical Journal A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "Experimental determination of reference pulses for highly segmented HPGe detectors and application to Pulse Shape Analysis used in \u03b3-ray tracking arrays", 
    "pagination": "198", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "911fe42bd612e2a69431cdee09e0a72c443e90c61a7a7a64dffc85a64b6b188c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epja/i2018-12636-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110208975"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epja/i2018-12636-9", 
      "https://app.dimensions.ai/details/publication/pub.1110208975"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000278_0000000278/records_79642_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1140%2Fepja%2Fi2018-12636-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epja/i2018-12636-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epja/i2018-12636-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epja/i2018-12636-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epja/i2018-12636-9'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epja/i2018-12636-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N951861f5f7bd47b5be2dc8973c2f40c3
4 schema:citation sg:pub.10.1140/epja/i2002-10352-9
5 sg:pub.10.1140/epja/i2013-13047-2
6 sg:pub.10.1140/epja/i2013-13061-4
7 sg:pub.10.1140/epja/i2016-16070-9
8 sg:pub.10.1140/epja/i2017-12214-9
9 sg:pub.10.1140/epja/i2017-12353-y
10 https://doi.org/10.1006/ndsh.2003.0003
11 https://doi.org/10.1016/j.nima.2004.08.072
12 https://doi.org/10.1016/j.nima.2006.08.130
13 https://doi.org/10.1016/j.nima.2006.11.042
14 https://doi.org/10.1016/j.nima.2007.06.079
15 https://doi.org/10.1016/j.nima.2008.05.003
16 https://doi.org/10.1016/j.nima.2008.05.057
17 https://doi.org/10.1016/j.nima.2008.11.011
18 https://doi.org/10.1016/j.nima.2009.01.079
19 https://doi.org/10.1016/j.nima.2009.02.042
20 https://doi.org/10.1016/j.nima.2010.04.043
21 https://doi.org/10.1016/j.nima.2011.01.146
22 https://doi.org/10.1016/j.nima.2011.02.089
23 https://doi.org/10.1016/j.nima.2011.02.109
24 https://doi.org/10.1016/j.nima.2011.02.110
25 https://doi.org/10.1016/j.nima.2011.04.021
26 https://doi.org/10.1016/j.nima.2011.05.007
27 https://doi.org/10.1016/j.nima.2011.06.004
28 https://doi.org/10.1016/j.nima.2011.06.099
29 https://doi.org/10.1016/j.nima.2011.11.081
30 https://doi.org/10.1016/j.nima.2012.08.111
31 https://doi.org/10.1016/j.nima.2013.07.026
32 https://doi.org/10.1016/j.nima.2015.10.032
33 https://doi.org/10.1016/j.nima.2015.12.040
34 https://doi.org/10.1016/j.nima.2016.03.094
35 https://doi.org/10.1016/j.nima.2017.02.063
36 https://doi.org/10.1016/j.nimb.2007.04.305
37 https://doi.org/10.1016/j.nuclphysa.2004.09.038
38 https://doi.org/10.1016/s0168-9002(99)00188-6
39 https://doi.org/10.1051/epjconf/20146602083
40 https://doi.org/10.1103/physrevc.62.024614
41 https://doi.org/10.1103/physrevc.82.044310
42 https://doi.org/10.1103/physrevlett.118.162501
43 schema:datePublished 2018-11
44 schema:datePublishedReg 2018-11-01
45 schema:description For the first time, bases of signals delivered by highly segmented HPGe detectors, for identified hit locations, have been determined in situ, that is in the actual accelerator-target-detection system conditions corresponding to data acquisition during a physics experiment. As a consequence, these bases include all the genuine features and alterations of the signals induced by the experimental setup, e.g. diaphony, electronic response, specificity of individual crystals. The present pulse shape bases were constructed using calibration source data taken at the beginning of the AGATA campaign at GANIL. An experiment performed at GANIL using the AGATA γ-ray detector together with the VAMOS spectrometer was used to validate the bases. The performance of the bases when used for pulse-shape analysis has been compared to the performance of the standard bases, composed of pulse shapes generated by a computer simulation used for AGATA. This is done by comparing the Doppler correction capability. The so-called Jacobian method used to generate the in situ bases also produces correlations that can be applied to locate in a direct way (no search algorithm) the location where a γ-ray interacted given that only one segment is hit. As about 50% of all pulse-shape analysis is performed on crystals with only one segment hit this will allow for a large reduction in the needed computer power. Different ways to improve the results of this prospective work are discussed.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N028f938c1db74c01a8a32d37a2a3cc16
50 Na76f9dbba1f843058a9dc80591f7600b
51 sg:journal.1313769
52 schema:name Experimental determination of reference pulses for highly segmented HPGe detectors and application to Pulse Shape Analysis used in γ-ray tracking arrays
53 schema:pagination 198
54 schema:productId N255c885fec7247c5bc0c22cf03227f1c
55 N48a37b0763b6408493ea10ba25b51621
56 Nee17a07ec7d2441e94928346ac0d14e1
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110208975
58 https://doi.org/10.1140/epja/i2018-12636-9
59 schema:sdDatePublished 2019-04-11T08:16
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N385cb78ab8834b8c85316c484a48c405
62 schema:url https://link.springer.com/10.1140%2Fepja%2Fi2018-12636-9
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N028f938c1db74c01a8a32d37a2a3cc16 schema:issueNumber 11
67 rdf:type schema:PublicationIssue
68 N17ed9f94fc9741f5b4c419e950fcfbcb rdf:first sg:person.011563606354.22
69 rdf:rest Ne2fefe6d590b4a9da209c74a4374bce2
70 N184c414ba43647f69045eccfc42c8505 rdf:first sg:person.015230226105.09
71 rdf:rest N539d22b2233a4daba116d5338febe299
72 N255c885fec7247c5bc0c22cf03227f1c schema:name dimensions_id
73 schema:value pub.1110208975
74 rdf:type schema:PropertyValue
75 N25b7e4fe6b9f471ba4edc24245fb5956 rdf:first sg:person.013362525147.91
76 rdf:rest rdf:nil
77 N385cb78ab8834b8c85316c484a48c405 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N48a37b0763b6408493ea10ba25b51621 schema:name readcube_id
80 schema:value 911fe42bd612e2a69431cdee09e0a72c443e90c61a7a7a64dffc85a64b6b188c
81 rdf:type schema:PropertyValue
82 N4bacd059f042453e8241ed6557edd27f rdf:first sg:person.015322477201.73
83 rdf:rest N184c414ba43647f69045eccfc42c8505
84 N539d22b2233a4daba116d5338febe299 rdf:first sg:person.011004212653.70
85 rdf:rest N17ed9f94fc9741f5b4c419e950fcfbcb
86 N726f51682fb943448587d19fd0d93820 schema:affiliation https://www.grid.ac/institutes/grid.72943.3b
87 schema:familyName Li
88 schema:givenName H. J.
89 rdf:type schema:Person
90 N951861f5f7bd47b5be2dc8973c2f40c3 rdf:first N726f51682fb943448587d19fd0d93820
91 rdf:rest Ne8d55e277e5e4734b70bf5eaf7b1e375
92 Na76f9dbba1f843058a9dc80591f7600b schema:volumeNumber 54
93 rdf:type schema:PublicationVolume
94 Ne2fefe6d590b4a9da209c74a4374bce2 rdf:first sg:person.01076565363.76
95 rdf:rest N25b7e4fe6b9f471ba4edc24245fb5956
96 Ne8d55e277e5e4734b70bf5eaf7b1e375 rdf:first sg:person.016673645207.84
97 rdf:rest N4bacd059f042453e8241ed6557edd27f
98 Nee17a07ec7d2441e94928346ac0d14e1 schema:name doi
99 schema:value 10.1140/epja/i2018-12636-9
100 rdf:type schema:PropertyValue
101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
102 schema:name Information and Computing Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
105 schema:name Artificial Intelligence and Image Processing
106 rdf:type schema:DefinedTerm
107 sg:journal.1313769 schema:issn 1434-6001
108 1434-601X
109 schema:name The European Physical Journal A
110 rdf:type schema:Periodical
111 sg:person.01076565363.76 schema:affiliation https://www.grid.ac/institutes/grid.462346.1
112 schema:familyName Lopez-Martens
113 schema:givenName A.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076565363.76
115 rdf:type schema:Person
116 sg:person.011004212653.70 schema:affiliation https://www.grid.ac/institutes/grid.7849.2
117 schema:familyName Dudouet
118 schema:givenName J.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011004212653.70
120 rdf:type schema:Person
121 sg:person.011563606354.22 schema:affiliation https://www.grid.ac/institutes/grid.462346.1
122 schema:familyName Désesquelles
123 schema:givenName P.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011563606354.22
125 rdf:type schema:Person
126 sg:person.013362525147.91 schema:affiliation https://www.grid.ac/institutes/grid.72943.3b
127 schema:familyName de France
128 schema:givenName G.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013362525147.91
130 rdf:type schema:Person
131 sg:person.015230226105.09 schema:affiliation https://www.grid.ac/institutes/grid.72943.3b
132 schema:familyName Clément
133 schema:givenName E.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015230226105.09
135 rdf:type schema:Person
136 sg:person.015322477201.73 schema:affiliation https://www.grid.ac/institutes/grid.72943.3b
137 schema:familyName Michelagnoli
138 schema:givenName C.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015322477201.73
140 rdf:type schema:Person
141 sg:person.016673645207.84 schema:affiliation https://www.grid.ac/institutes/grid.462346.1
142 schema:familyName Ljungvall
143 schema:givenName J.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673645207.84
145 rdf:type schema:Person
146 sg:pub.10.1140/epja/i2002-10352-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049591032
147 https://doi.org/10.1140/epja/i2002-10352-9
148 rdf:type schema:CreativeWork
149 sg:pub.10.1140/epja/i2013-13047-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052612914
150 https://doi.org/10.1140/epja/i2013-13047-2
151 rdf:type schema:CreativeWork
152 sg:pub.10.1140/epja/i2013-13061-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049263416
153 https://doi.org/10.1140/epja/i2013-13061-4
154 rdf:type schema:CreativeWork
155 sg:pub.10.1140/epja/i2016-16070-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034039409
156 https://doi.org/10.1140/epja/i2016-16070-9
157 rdf:type schema:CreativeWork
158 sg:pub.10.1140/epja/i2017-12214-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083758101
159 https://doi.org/10.1140/epja/i2017-12214-9
160 rdf:type schema:CreativeWork
161 sg:pub.10.1140/epja/i2017-12353-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1091100373
162 https://doi.org/10.1140/epja/i2017-12353-y
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1006/ndsh.2003.0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011485186
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.nima.2004.08.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018671763
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.nima.2006.08.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000688581
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.nima.2006.11.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013866909
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.nima.2007.06.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028704782
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.nima.2008.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026552056
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.nima.2008.05.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000788140
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.nima.2008.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039673045
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.nima.2009.01.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009960303
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.nima.2009.02.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038385412
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.nima.2010.04.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025305608
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.nima.2011.01.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026899784
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.nima.2011.02.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050295600
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.nima.2011.02.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045506445
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.nima.2011.02.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051798961
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.nima.2011.04.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004501174
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.nima.2011.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005556554
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.nima.2011.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032310764
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.nima.2011.06.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036238639
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.nima.2011.11.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045831006
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.nima.2012.08.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005256517
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.nima.2013.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004332002
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.nima.2015.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012761660
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.nima.2015.12.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006466800
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.nima.2016.03.094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042555105
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.nima.2017.02.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083865783
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.nimb.2007.04.305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035702166
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.nuclphysa.2004.09.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032756453
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0168-9002(99)00188-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032181523
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1051/epjconf/20146602083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056964008
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevc.62.024614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060672517
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevc.82.044310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060677664
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.118.162501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084868045
229 rdf:type schema:CreativeWork
230 https://www.grid.ac/institutes/grid.462346.1 schema:alternateName Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse
231 schema:name CSNSM, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405, Orsay, France
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.72943.3b schema:alternateName Large Heavy Ion National Accelerator
234 schema:name GANIL, CEA/DRF-CNRS/IN2P3, BP 55027, 14076, Caen Cedex 5, France
235 Institut Laue-Langevin, B.P. 156, F-38042, Grenoble Cedex 9, France
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.7849.2 schema:alternateName Claude Bernard University Lyon 1
238 schema:name CSNSM, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405, Orsay, France
239 Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622, Villeurbanne, France
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...