Porous Refractory Ceramics as a Protective Material in Explosive Loading of Metal Container View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

R. D. Kapustin, P. A. Nikolaenko

ABSTRACT

In this work, we tested experimentally refractory porous aluminosilicate ceramic materials as protective energy-absorbing design elements of naturalistic large-scale layouts of explosion-proof thin-walled metal containers. We showed that lightweight refractory porous aluminosilicate materials can be effectively used for an efficient (two or more times) increase in explosion-proof characteristics of the containers simultaneously with minimization of their mass and dimensions. These materials significantly reduce the impact of a shock wave and other damaging factors of explosives and explosive devices on the metal shell of the containers. We developed full-size models of explosion-proof containers with a diameter of 1.2 m that are capable of withstanding an explosion of explosive charge (TNT) with a weight of not less than 3.5 kg without being beyond the range of elastic deformation of the metal shell. The obtained results allow designing similar explosion-proof containers in a wide mass-scale range with predetermined explosion-proof characteristics without costly research and development. Solid refractory porous materials are promising for the development of nonstationary transported explosion-proof containers for the storage, transportation, and destruction of explosive materials and devices, since their application makes it possible to reduce the material consumption, weight, and dimensions of containers. More... »

PAGES

906-909

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s2075113318050131

DOI

http://dx.doi.org/10.1134/s2075113318050131

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107560351


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Structural Macrokinetics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.466001.5", 
          "name": [
            "Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 142432, Chernogolovka, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kapustin", 
        "givenName": "R. D.", 
        "id": "sg:person.015114021000.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015114021000.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Structural Macrokinetics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.466001.5", 
          "name": [
            "Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 142432, Chernogolovka, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolaenko", 
        "givenName": "P. A.", 
        "id": "sg:person.010003710600.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010003710600.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.20310/1810-0198-2016-21-3-757-759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068771509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22226/2410-3535-2014-1-28-32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069340233"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "In this work, we tested experimentally refractory porous aluminosilicate ceramic materials as protective energy-absorbing design elements of naturalistic large-scale layouts of explosion-proof thin-walled metal containers. We showed that lightweight refractory porous aluminosilicate materials can be effectively used for an efficient (two or more times) increase in explosion-proof characteristics of the containers simultaneously with minimization of their mass and dimensions. These materials significantly reduce the impact of a shock wave and other damaging factors of explosives and explosive devices on the metal shell of the containers. We developed full-size models of explosion-proof containers with a diameter of 1.2 m that are capable of withstanding an explosion of explosive charge (TNT) with a weight of not less than 3.5 kg without being beyond the range of elastic deformation of the metal shell. The obtained results allow designing similar explosion-proof containers in a wide mass-scale range with predetermined explosion-proof characteristics without costly research and development. Solid refractory porous materials are promising for the development of nonstationary transported explosion-proof containers for the storage, transportation, and destruction of explosive materials and devices, since their application makes it possible to reduce the material consumption, weight, and dimensions of containers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s2075113318050131", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135943", 
        "issn": [
          "2075-1133", 
          "2075-115X"
        ], 
        "name": "Inorganic Materials: Applied Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Porous Refractory Ceramics as a Protective Material in Explosive Loading of Metal Container", 
    "pagination": "906-909", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b190f9bfb7bbbff379202d27f45cbd2295a936bbc4a4211b1822bdee0345201d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s2075113318050131"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107560351"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s2075113318050131", 
      "https://app.dimensions.ai/details/publication/pub.1107560351"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000560.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS2075113318050131"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s2075113318050131'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s2075113318050131'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s2075113318050131'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s2075113318050131'


 

This table displays all metadata directly associated to this object as RDF triples.

74 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s2075113318050131 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N826660b64f374ab3a25074b75e855bdc
4 schema:citation https://doi.org/10.20310/1810-0198-2016-21-3-757-759
5 https://doi.org/10.22226/2410-3535-2014-1-28-32
6 schema:datePublished 2018-09
7 schema:datePublishedReg 2018-09-01
8 schema:description In this work, we tested experimentally refractory porous aluminosilicate ceramic materials as protective energy-absorbing design elements of naturalistic large-scale layouts of explosion-proof thin-walled metal containers. We showed that lightweight refractory porous aluminosilicate materials can be effectively used for an efficient (two or more times) increase in explosion-proof characteristics of the containers simultaneously with minimization of their mass and dimensions. These materials significantly reduce the impact of a shock wave and other damaging factors of explosives and explosive devices on the metal shell of the containers. We developed full-size models of explosion-proof containers with a diameter of 1.2 m that are capable of withstanding an explosion of explosive charge (TNT) with a weight of not less than 3.5 kg without being beyond the range of elastic deformation of the metal shell. The obtained results allow designing similar explosion-proof containers in a wide mass-scale range with predetermined explosion-proof characteristics without costly research and development. Solid refractory porous materials are promising for the development of nonstationary transported explosion-proof containers for the storage, transportation, and destruction of explosive materials and devices, since their application makes it possible to reduce the material consumption, weight, and dimensions of containers.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N0845519746f144418d88e9df0ed5214d
13 Na625ccab4c9e4d25bf625f0c1258a0ad
14 sg:journal.1135943
15 schema:name Porous Refractory Ceramics as a Protective Material in Explosive Loading of Metal Container
16 schema:pagination 906-909
17 schema:productId N10d12993ad524602b1a5c42a0e8ba950
18 N908a057109c546cab8407127500e5ff0
19 Nce82285eb60b4cd5a1b455b42459895b
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107560351
21 https://doi.org/10.1134/s2075113318050131
22 schema:sdDatePublished 2019-04-11T01:15
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N4da6ebabc3ac4487a6f4c9702dd735cd
25 schema:url https://link.springer.com/10.1134%2FS2075113318050131
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N0845519746f144418d88e9df0ed5214d schema:volumeNumber 9
30 rdf:type schema:PublicationVolume
31 N10d12993ad524602b1a5c42a0e8ba950 schema:name doi
32 schema:value 10.1134/s2075113318050131
33 rdf:type schema:PropertyValue
34 N4da6ebabc3ac4487a6f4c9702dd735cd schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N73332ad45f914dea9fa76db4425e7b7e rdf:first sg:person.010003710600.44
37 rdf:rest rdf:nil
38 N826660b64f374ab3a25074b75e855bdc rdf:first sg:person.015114021000.22
39 rdf:rest N73332ad45f914dea9fa76db4425e7b7e
40 N908a057109c546cab8407127500e5ff0 schema:name readcube_id
41 schema:value b190f9bfb7bbbff379202d27f45cbd2295a936bbc4a4211b1822bdee0345201d
42 rdf:type schema:PropertyValue
43 Na625ccab4c9e4d25bf625f0c1258a0ad schema:issueNumber 5
44 rdf:type schema:PublicationIssue
45 Nce82285eb60b4cd5a1b455b42459895b schema:name dimensions_id
46 schema:value pub.1107560351
47 rdf:type schema:PropertyValue
48 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
49 schema:name Engineering
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
52 schema:name Materials Engineering
53 rdf:type schema:DefinedTerm
54 sg:journal.1135943 schema:issn 2075-1133
55 2075-115X
56 schema:name Inorganic Materials: Applied Research
57 rdf:type schema:Periodical
58 sg:person.010003710600.44 schema:affiliation https://www.grid.ac/institutes/grid.466001.5
59 schema:familyName Nikolaenko
60 schema:givenName P. A.
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010003710600.44
62 rdf:type schema:Person
63 sg:person.015114021000.22 schema:affiliation https://www.grid.ac/institutes/grid.466001.5
64 schema:familyName Kapustin
65 schema:givenName R. D.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015114021000.22
67 rdf:type schema:Person
68 https://doi.org/10.20310/1810-0198-2016-21-3-757-759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068771509
69 rdf:type schema:CreativeWork
70 https://doi.org/10.22226/2410-3535-2014-1-28-32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069340233
71 rdf:type schema:CreativeWork
72 https://www.grid.ac/institutes/grid.466001.5 schema:alternateName Institute of Structural Macrokinetics and Materials Science
73 schema:name Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 142432, Chernogolovka, Russia
74 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...