Relationship of the Structure and the Effective Diffusion Properties of Porous Zinc- and Copper-Containing Calcium Phosphate Coatings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

N. N. Nazarenko, A. G. Knyazeva, E. G. Komarova, M. B. Sedelnikova, Yu. P. Sharkeev

ABSTRACT

The morphology and the structure of zinc- or copper-containing calcium phosphate coatings deposited by the microarc oxidation (MAO) method at different voltages on pure titanium and low-modulus Ti-40 wt % Nb alloy substrates are investigated. The morphology of the MAO coatings on both substrates is composed of sphere-shaped structural elements 8–42 μm in size and pores 1–15 μm in size. When the process voltage is increased from 200 to 300 V, these structural elements grow and partially destruct. It is ascertained that the MAO voltage increase leads to the linear increase in the surface porosity of the coatings from 14 to 24%. It is established that the effective diffusion coefficients of the model biological fluid in porous coatings vary from 0.85 × 10–10 to 9.0 × 10–10 m2/s. Under the increase in the structure element size, the effective diffusion coefficient of the model biological fluid increases in the MAO coatings deposited on a titanium substrate and decreases in those deposited on Ti-40 wt % Nb alloy. The observed difference is related to the increase in the crystalline phase fraction. More... »

PAGES

451-459

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s2075113318030243

DOI

http://dx.doi.org/10.1134/s2075113318030243

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104434932


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nazarenko", 
        "givenName": "N. N.", 
        "id": "sg:person.010005737061.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005737061.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia", 
            "National Research Tomsk Polytechnic University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knyazeva", 
        "givenName": "A. G.", 
        "id": "sg:person.015605237135.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015605237135.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Komarova", 
        "givenName": "E. G.", 
        "id": "sg:person.013162664601.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013162664601.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedelnikova", 
        "givenName": "M. B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia", 
            "National Research Tomsk Polytechnic University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharkeev", 
        "givenName": "Yu. P.", 
        "id": "sg:person.07364365617.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364365617.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ceramint.2015.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006078246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2011.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007978760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0501.2005.01168.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008817770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0501.2005.01168.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008817770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/kem.695.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072097864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-6326(17)60014-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074243955"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "The morphology and the structure of zinc- or copper-containing calcium phosphate coatings deposited by the microarc oxidation (MAO) method at different voltages on pure titanium and low-modulus Ti-40 wt % Nb alloy substrates are investigated. The morphology of the MAO coatings on both substrates is composed of sphere-shaped structural elements 8\u201342 \u03bcm in size and pores 1\u201315 \u03bcm in size. When the process voltage is increased from 200 to 300 V, these structural elements grow and partially destruct. It is ascertained that the MAO voltage increase leads to the linear increase in the surface porosity of the coatings from 14 to 24%. It is established that the effective diffusion coefficients of the model biological fluid in porous coatings vary from 0.85 \u00d7 10\u201310 to 9.0 \u00d7 10\u201310 m2/s. Under the increase in the structure element size, the effective diffusion coefficient of the model biological fluid increases in the MAO coatings deposited on a titanium substrate and decreases in those deposited on Ti-40 wt % Nb alloy. The observed difference is related to the increase in the crystalline phase fraction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s2075113318030243", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135943", 
        "issn": [
          "2075-1133", 
          "2075-115X"
        ], 
        "name": "Inorganic Materials: Applied Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Relationship of the Structure and the Effective Diffusion Properties of Porous Zinc- and Copper-Containing Calcium Phosphate Coatings", 
    "pagination": "451-459", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e0c807966591d0cdff5728a998c1627332ba95e491bb2194fdfabc5d92b9d330"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s2075113318030243"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104434932"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s2075113318030243", 
      "https://app.dimensions.ai/details/publication/pub.1104434932"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000570.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS2075113318030243"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s2075113318030243'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s2075113318030243'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s2075113318030243'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s2075113318030243'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s2075113318030243 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N82f656076dca4e2f901b257ed06b99d3
4 schema:citation https://doi.org/10.1016/j.actbio.2011.09.031
5 https://doi.org/10.1016/j.ceramint.2015.08.004
6 https://doi.org/10.1016/s1003-6326(17)60014-1
7 https://doi.org/10.1111/j.1600-0501.2005.01168.x
8 https://doi.org/10.4028/www.scientific.net/kem.695.144
9 schema:datePublished 2018-05
10 schema:datePublishedReg 2018-05-01
11 schema:description The morphology and the structure of zinc- or copper-containing calcium phosphate coatings deposited by the microarc oxidation (MAO) method at different voltages on pure titanium and low-modulus Ti-40 wt % Nb alloy substrates are investigated. The morphology of the MAO coatings on both substrates is composed of sphere-shaped structural elements 8–42 μm in size and pores 1–15 μm in size. When the process voltage is increased from 200 to 300 V, these structural elements grow and partially destruct. It is ascertained that the MAO voltage increase leads to the linear increase in the surface porosity of the coatings from 14 to 24%. It is established that the effective diffusion coefficients of the model biological fluid in porous coatings vary from 0.85 × 10–10 to 9.0 × 10–10 m2/s. Under the increase in the structure element size, the effective diffusion coefficient of the model biological fluid increases in the MAO coatings deposited on a titanium substrate and decreases in those deposited on Ti-40 wt % Nb alloy. The observed difference is related to the increase in the crystalline phase fraction.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N48dae8274c634c1f825020fe70d765dd
16 N991b6610b6bb491fbb41d3dddb938570
17 sg:journal.1135943
18 schema:name Relationship of the Structure and the Effective Diffusion Properties of Porous Zinc- and Copper-Containing Calcium Phosphate Coatings
19 schema:pagination 451-459
20 schema:productId N3fca9b9db3b14ffaa88c36859aa1df03
21 N736415151aab49db98ae85eaa0b2dfb5
22 Neb4a68604f314eeeb65702042fe8067b
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104434932
24 https://doi.org/10.1134/s2075113318030243
25 schema:sdDatePublished 2019-04-10T20:55
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N8e198748317f48eaa1458f1021b31070
28 schema:url https://link.springer.com/10.1134%2FS2075113318030243
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N3fca9b9db3b14ffaa88c36859aa1df03 schema:name readcube_id
33 schema:value e0c807966591d0cdff5728a998c1627332ba95e491bb2194fdfabc5d92b9d330
34 rdf:type schema:PropertyValue
35 N48dae8274c634c1f825020fe70d765dd schema:issueNumber 3
36 rdf:type schema:PublicationIssue
37 N736415151aab49db98ae85eaa0b2dfb5 schema:name doi
38 schema:value 10.1134/s2075113318030243
39 rdf:type schema:PropertyValue
40 N741fa2fc80fb4ea0a5ca080c843f1469 rdf:first sg:person.015605237135.34
41 rdf:rest Ne72612b27ebe4e0a91f64ab19e6621e2
42 N82f656076dca4e2f901b257ed06b99d3 rdf:first sg:person.010005737061.32
43 rdf:rest N741fa2fc80fb4ea0a5ca080c843f1469
44 N8de1bf62b7eb4ac5b9f5c8d862c48776 rdf:first Nbe90892083cd4bf5b4164880b7420b7b
45 rdf:rest Nfd0b53636cab49b1b328328403447eda
46 N8e198748317f48eaa1458f1021b31070 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N991b6610b6bb491fbb41d3dddb938570 schema:volumeNumber 9
49 rdf:type schema:PublicationVolume
50 Nbe90892083cd4bf5b4164880b7420b7b schema:affiliation https://www.grid.ac/institutes/grid.467103.7
51 schema:familyName Sedelnikova
52 schema:givenName M. B.
53 rdf:type schema:Person
54 Ne72612b27ebe4e0a91f64ab19e6621e2 rdf:first sg:person.013162664601.24
55 rdf:rest N8de1bf62b7eb4ac5b9f5c8d862c48776
56 Neb4a68604f314eeeb65702042fe8067b schema:name dimensions_id
57 schema:value pub.1104434932
58 rdf:type schema:PropertyValue
59 Nfd0b53636cab49b1b328328403447eda rdf:first sg:person.07364365617.30
60 rdf:rest rdf:nil
61 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
62 schema:name Engineering
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
65 schema:name Materials Engineering
66 rdf:type schema:DefinedTerm
67 sg:journal.1135943 schema:issn 2075-1133
68 2075-115X
69 schema:name Inorganic Materials: Applied Research
70 rdf:type schema:Periodical
71 sg:person.010005737061.32 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
72 schema:familyName Nazarenko
73 schema:givenName N. N.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010005737061.32
75 rdf:type schema:Person
76 sg:person.013162664601.24 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
77 schema:familyName Komarova
78 schema:givenName E. G.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013162664601.24
80 rdf:type schema:Person
81 sg:person.015605237135.34 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
82 schema:familyName Knyazeva
83 schema:givenName A. G.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015605237135.34
85 rdf:type schema:Person
86 sg:person.07364365617.30 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
87 schema:familyName Sharkeev
88 schema:givenName Yu. P.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364365617.30
90 rdf:type schema:Person
91 https://doi.org/10.1016/j.actbio.2011.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007978760
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.ceramint.2015.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006078246
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/s1003-6326(17)60014-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074243955
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1111/j.1600-0501.2005.01168.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008817770
98 rdf:type schema:CreativeWork
99 https://doi.org/10.4028/www.scientific.net/kem.695.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072097864
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.27736.37 schema:alternateName Tomsk Polytechnic University
102 schema:name Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
103 National Research Tomsk Polytechnic University, 634050, Tomsk, Russia
104 rdf:type schema:Organization
105 https://www.grid.ac/institutes/grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science
106 schema:name Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...