Strength of optical quality polycrystalline CVD diamond View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-10

AUTHORS

V. G. Ralchenko, E. Pleiler, D. N. Sovyk, V. I. Konov

ABSTRACT

The three-point loading method is used to the measure the fracture strength σf of polycrystalline CVD diamond plates with thickness in the range of h = 0.06–1.0 mm. Optical quality samples grown in a microwave plasma using CH4-H2 gas mixtures show an inherently nonuniform structure, the crystallite size varying (increasing) by 1–2 orders of magnitude in traversing from the substrate side to growth side. The value of σf approaches ≈ 2200 MPa for the thinnest film when the fine-grained (substrate) side is under tensile stress, reducing with plate thickness down to ≈ 600 MPa at h ≈1000 μm. The strength is approximately a factor of two lower for the substrate side under tensile stress. In general, the material tested follows Hall-Petch relationship—a stress increase with grain size reduction. The fracture statistics are analyzed using a Weibull distribution, and a Weibull modulus m of 6.4 and 4.5 is found for the growth and substrate side under tension, respectively. Young’s modulus E = 1072 ± 153 GPa for polycrystalline diamond is evaluated from the same tests. More... »

PAGES

439-444

References to SciGraph publications

  • 2008-09. Thermal conductivity of polycrystalline CVD diamond: Experiment and theory in JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s2075113311050273

    DOI

    http://dx.doi.org/10.1134/s2075113311050273

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003437429


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Prokhorov General Physics Institute", 
              "id": "https://www.grid.ac/institutes/grid.424964.9", 
              "name": [
                "Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ralchenko", 
            "givenName": "V. G.", 
            "id": "sg:person.016264152212.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016264152212.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Applied Solid State Physics", 
              "id": "https://www.grid.ac/institutes/grid.424642.2", 
              "name": [
                "Fraunhofer Institute for Applied Solid State Physics IAF, Freiburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pleiler", 
            "givenName": "E.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Prokhorov General Physics Institute", 
              "id": "https://www.grid.ac/institutes/grid.424964.9", 
              "name": [
                "Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sovyk", 
            "givenName": "D. N.", 
            "id": "sg:person.013272271725.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013272271725.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Prokhorov General Physics Institute", 
              "id": "https://www.grid.ac/institutes/grid.424964.9", 
              "name": [
                "Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Konov", 
            "givenName": "V. I.", 
            "id": "sg:person.013212222701.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013212222701.85"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0925-9635(99)00366-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003162296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-9635(02)00197-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007911990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-9635(02)00197-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007911990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14786430310001613246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010060087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-9635(00)00523-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010540509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0925-9635(95)00300-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013479846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-9635(98)00427-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020302252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-9635(98)00277-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020817339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0257-8972(03)00688-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024040905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0257-8972(03)00688-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024040905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0925-9635(93)90250-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035983354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0925-9635(93)90250-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035983354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-9635(01)00665-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041122962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-9635(01)00397-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041147344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-9635(03)00214-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042403060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-9635(03)00214-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042403060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/21/36/364221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045846049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/21/36/364221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045846049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063776108090136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048131487", 
              "https://doi.org/10.1134/s1063776108090136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.diamond.2010.01.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048617017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2004.04.089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052796004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.119399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057683587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1613372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057725814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/qe2008v038n12abeh013822", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058187751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/qe2008v038n12abeh013822", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058187751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/mrs2010.550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067969840"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-10", 
        "datePublishedReg": "2011-10-01", 
        "description": "The three-point loading method is used to the measure the fracture strength \u03c3f of polycrystalline CVD diamond plates with thickness in the range of h = 0.06\u20131.0 mm. Optical quality samples grown in a microwave plasma using CH4-H2 gas mixtures show an inherently nonuniform structure, the crystallite size varying (increasing) by 1\u20132 orders of magnitude in traversing from the substrate side to growth side. The value of \u03c3f approaches \u2248 2200 MPa for the thinnest film when the fine-grained (substrate) side is under tensile stress, reducing with plate thickness down to \u2248 600 MPa at h \u22481000 \u03bcm. The strength is approximately a factor of two lower for the substrate side under tensile stress. In general, the material tested follows Hall-Petch relationship\u2014a stress increase with grain size reduction. The fracture statistics are analyzed using a Weibull distribution, and a Weibull modulus m of 6.4 and 4.5 is found for the growth and substrate side under tension, respectively. Young\u2019s modulus E = 1072 \u00b1 153 GPa for polycrystalline diamond is evaluated from the same tests.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s2075113311050273", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135943", 
            "issn": [
              "2075-1133", 
              "2075-115X"
            ], 
            "name": "Inorganic Materials: Applied Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "Strength of optical quality polycrystalline CVD diamond", 
        "pagination": "439-444", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "105fbab60008ac7c86386d87a81a402b48f1dabd25bf6fb95abd3238a7af69b9"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s2075113311050273"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003437429"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s2075113311050273", 
          "https://app.dimensions.ai/details/publication/pub.1003437429"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000536.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134%2FS2075113311050273"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s2075113311050273'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s2075113311050273'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s2075113311050273'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s2075113311050273'


     

    This table displays all metadata directly associated to this object as RDF triples.

    145 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s2075113311050273 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nd96886bf9b264e519540f1295466fa03
    4 schema:citation sg:pub.10.1134/s1063776108090136
    5 https://doi.org/10.1016/0925-9635(93)90250-6
    6 https://doi.org/10.1016/0925-9635(95)00300-2
    7 https://doi.org/10.1016/j.diamond.2010.01.020
    8 https://doi.org/10.1016/j.surfcoat.2004.04.089
    9 https://doi.org/10.1016/s0257-8972(03)00688-1
    10 https://doi.org/10.1016/s0925-9635(00)00523-9
    11 https://doi.org/10.1016/s0925-9635(01)00397-1
    12 https://doi.org/10.1016/s0925-9635(01)00665-3
    13 https://doi.org/10.1016/s0925-9635(02)00197-8
    14 https://doi.org/10.1016/s0925-9635(03)00214-0
    15 https://doi.org/10.1016/s0925-9635(98)00277-5
    16 https://doi.org/10.1016/s0925-9635(98)00427-0
    17 https://doi.org/10.1016/s0925-9635(99)00366-0
    18 https://doi.org/10.1063/1.119399
    19 https://doi.org/10.1063/1.1613372
    20 https://doi.org/10.1070/qe2008v038n12abeh013822
    21 https://doi.org/10.1080/14786430310001613246
    22 https://doi.org/10.1088/0953-8984/21/36/364221
    23 https://doi.org/10.1557/mrs2010.550
    24 schema:datePublished 2011-10
    25 schema:datePublishedReg 2011-10-01
    26 schema:description The three-point loading method is used to the measure the fracture strength σf of polycrystalline CVD diamond plates with thickness in the range of h = 0.06–1.0 mm. Optical quality samples grown in a microwave plasma using CH4-H2 gas mixtures show an inherently nonuniform structure, the crystallite size varying (increasing) by 1–2 orders of magnitude in traversing from the substrate side to growth side. The value of σf approaches ≈ 2200 MPa for the thinnest film when the fine-grained (substrate) side is under tensile stress, reducing with plate thickness down to ≈ 600 MPa at h ≈1000 μm. The strength is approximately a factor of two lower for the substrate side under tensile stress. In general, the material tested follows Hall-Petch relationship—a stress increase with grain size reduction. The fracture statistics are analyzed using a Weibull distribution, and a Weibull modulus m of 6.4 and 4.5 is found for the growth and substrate side under tension, respectively. Young’s modulus E = 1072 ± 153 GPa for polycrystalline diamond is evaluated from the same tests.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N9b773ed0044248ca9d3a7ec823353c79
    31 Naea255368ec140ab8695eaee0086bbb7
    32 sg:journal.1135943
    33 schema:name Strength of optical quality polycrystalline CVD diamond
    34 schema:pagination 439-444
    35 schema:productId N0c419b03cda84de193c84b1c4debceb5
    36 N553322d156404aaba3989180cf999b04
    37 N82909b2fc8f74c5b88c0aa310fbf5c60
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003437429
    39 https://doi.org/10.1134/s2075113311050273
    40 schema:sdDatePublished 2019-04-10T22:37
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher Nbd016cacb9b6465894ce818ffc793db6
    43 schema:url http://link.springer.com/10.1134%2FS2075113311050273
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N0c419b03cda84de193c84b1c4debceb5 schema:name readcube_id
    48 schema:value 105fbab60008ac7c86386d87a81a402b48f1dabd25bf6fb95abd3238a7af69b9
    49 rdf:type schema:PropertyValue
    50 N1d0d206f960344569f6032bffa792161 rdf:first N644c7face1c2406f89bd4e3af27f9e73
    51 rdf:rest N97772e98875a456fb28a8669e012274c
    52 N553322d156404aaba3989180cf999b04 schema:name dimensions_id
    53 schema:value pub.1003437429
    54 rdf:type schema:PropertyValue
    55 N644c7face1c2406f89bd4e3af27f9e73 schema:affiliation https://www.grid.ac/institutes/grid.424642.2
    56 schema:familyName Pleiler
    57 schema:givenName E.
    58 rdf:type schema:Person
    59 N6b2125f3a58142dab0af7bdf57c9e4aa rdf:first sg:person.013212222701.85
    60 rdf:rest rdf:nil
    61 N82909b2fc8f74c5b88c0aa310fbf5c60 schema:name doi
    62 schema:value 10.1134/s2075113311050273
    63 rdf:type schema:PropertyValue
    64 N97772e98875a456fb28a8669e012274c rdf:first sg:person.013272271725.47
    65 rdf:rest N6b2125f3a58142dab0af7bdf57c9e4aa
    66 N9b773ed0044248ca9d3a7ec823353c79 schema:issueNumber 5
    67 rdf:type schema:PublicationIssue
    68 Naea255368ec140ab8695eaee0086bbb7 schema:volumeNumber 2
    69 rdf:type schema:PublicationVolume
    70 Nbd016cacb9b6465894ce818ffc793db6 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 Nd96886bf9b264e519540f1295466fa03 rdf:first sg:person.016264152212.96
    73 rdf:rest N1d0d206f960344569f6032bffa792161
    74 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Engineering
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Materials Engineering
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1135943 schema:issn 2075-1133
    81 2075-115X
    82 schema:name Inorganic Materials: Applied Research
    83 rdf:type schema:Periodical
    84 sg:person.013212222701.85 schema:affiliation https://www.grid.ac/institutes/grid.424964.9
    85 schema:familyName Konov
    86 schema:givenName V. I.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013212222701.85
    88 rdf:type schema:Person
    89 sg:person.013272271725.47 schema:affiliation https://www.grid.ac/institutes/grid.424964.9
    90 schema:familyName Sovyk
    91 schema:givenName D. N.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013272271725.47
    93 rdf:type schema:Person
    94 sg:person.016264152212.96 schema:affiliation https://www.grid.ac/institutes/grid.424964.9
    95 schema:familyName Ralchenko
    96 schema:givenName V. G.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016264152212.96
    98 rdf:type schema:Person
    99 sg:pub.10.1134/s1063776108090136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048131487
    100 https://doi.org/10.1134/s1063776108090136
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/0925-9635(93)90250-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035983354
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/0925-9635(95)00300-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013479846
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/j.diamond.2010.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048617017
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.surfcoat.2004.04.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052796004
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/s0257-8972(03)00688-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024040905
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/s0925-9635(00)00523-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010540509
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/s0925-9635(01)00397-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041147344
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/s0925-9635(01)00665-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041122962
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/s0925-9635(02)00197-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007911990
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/s0925-9635(03)00214-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042403060
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/s0925-9635(98)00277-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020817339
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/s0925-9635(98)00427-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020302252
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/s0925-9635(99)00366-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003162296
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1063/1.119399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057683587
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1063/1.1613372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057725814
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1070/qe2008v038n12abeh013822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058187751
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1080/14786430310001613246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010060087
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1088/0953-8984/21/36/364221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045846049
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1557/mrs2010.550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067969840
    139 rdf:type schema:CreativeWork
    140 https://www.grid.ac/institutes/grid.424642.2 schema:alternateName Institute for Applied Solid State Physics
    141 schema:name Fraunhofer Institute for Applied Solid State Physics IAF, Freiburg, Germany
    142 rdf:type schema:Organization
    143 https://www.grid.ac/institutes/grid.424964.9 schema:alternateName Prokhorov General Physics Institute
    144 schema:name Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia
    145 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...