Capacitive Deionization of Water with Electrodes Based on Nanoporous Activated Carbon and a Mosaic Cation–Anion Exchange Membrane View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-01

AUTHORS

Yu. M. Volfkovich, A. A. Mikhalin, A. Yu. Rychagov, M. M. Kardash

ABSTRACT

The capacitive deionization of water (CDW) was investigated with the purpose to obtain pure water. To this end, mosaic cation–anion-exchange membranes and activated carbon electrodes were used. The mosaic membranes contained cation- and anion-exchange components embedded in a synthetic-fiber-based matrix. The means of preparation for the pressed mosaic membranes included pressing the cation- and anion-exchange membranes into each other. Another method was via the subsequent formation of cation- and anion-exchange bands in the fibrous matrix (in a banded membrane). The activated carbon electrodes and mosaic membranes possessed sufficient specific ion surface conductivities even in clean water. The specific energy consumption was 31.9 and 111.7 W mol–1 for the CDW devices containing banded and pressed membranes, respectively. Therefore, the banded membrane was preferable for obtaining pure drinking water. It was found that the CDW with the banded mosaic membrane exhibited the best performance at a voltage of 2 V and a solution flow rate of 15 cm3/min. More... »

PAGES

68-79

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s2070205121010214

DOI

http://dx.doi.org/10.1134/s2070205121010214

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1136297958


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465278.a", 
          "name": [
            "Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volfkovich", 
        "givenName": "Yu. M.", 
        "id": "sg:person.010662103332.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662103332.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465278.a", 
          "name": [
            "Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikhalin", 
        "givenName": "A. A.", 
        "id": "sg:person.013640774515.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640774515.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465278.a", 
          "name": [
            "Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rychagov", 
        "givenName": "A. Yu.", 
        "id": "sg:person.013073314001.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013073314001.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yuri Gagarin State Technical University of Saratov, 410054, Engels, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Yuri Gagarin State Technical University of Saratov, 410054, Engels, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kardash", 
        "givenName": "M. M.", 
        "id": "sg:person.014706644725.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014706644725.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4471-6377-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000305429", 
          "https://doi.org/10.1007/978-1-4471-6377-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016019021741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016120039", 
          "https://doi.org/10.1023/a:1016019021741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022924628069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010088935", 
          "https://doi.org/10.1023/a:1022924628069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116050078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002213048", 
          "https://doi.org/10.1134/s0965544116050078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544113070086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035076470", 
          "https://doi.org/10.1134/s0965544113070086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1023193513060141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051566249", 
          "https://doi.org/10.1134/s1023193513060141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:fich.0000012190.87073.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002223016", 
          "https://doi.org/10.1023/b:fich.0000012190.87073.86"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10008-013-2271-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010347057", 
          "https://doi.org/10.1007/s10008-013-2271-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3058-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040777413", 
          "https://doi.org/10.1007/978-1-4757-3058-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1023193520010061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126001938", 
          "https://doi.org/10.1134/s1023193520010061"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-01", 
    "datePublishedReg": "2021-01-01", 
    "description": "The capacitive deionization of water (CDW) was investigated with the purpose to obtain pure water. To this end, mosaic cation\u2013anion-exchange membranes and activated carbon electrodes were used. The mosaic membranes contained cation- and anion-exchange components embedded in a synthetic-fiber-based matrix. The means of preparation for the pressed mosaic membranes included pressing the cation- and anion-exchange membranes into each other. Another method was via the subsequent formation of cation- and anion-exchange bands in the fibrous matrix (in a banded membrane). The activated carbon electrodes and mosaic membranes possessed sufficient specific ion surface conductivities even in clean water. The specific energy consumption was 31.9 and 111.7 W mol\u20131 for the CDW devices containing banded and pressed membranes, respectively. Therefore, the banded membrane was preferable for obtaining pure drinking water. It was found that the CDW with the banded mosaic membrane exhibited the best performance at a voltage of 2 V and a solution flow rate of 15 cm3/min.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s2070205121010214", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136666", 
        "issn": [
          "0033-1732", 
          "1608-327X"
        ], 
        "name": "Protection of Metals and Physical Chemistry of Surfaces", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "keywords": [
      "mosaic membranes", 
      "carbon electrode", 
      "exchange membranes", 
      "capacitive deionization", 
      "Nanoporous Activated Carbon", 
      "activated carbon electrodes", 
      "anion exchange membranes", 
      "solution flow rate", 
      "activated carbon", 
      "pure water", 
      "cations", 
      "electrode", 
      "means of preparation", 
      "cm3/min", 
      "deionization", 
      "subsequent formation", 
      "surface conductivity", 
      "pure drinking water", 
      "water", 
      "membrane", 
      "fibrous matrix", 
      "drinking water", 
      "preparation", 
      "carbon", 
      "clean water", 
      "flow rate", 
      "conductivity", 
      "matrix", 
      "specific energy consumption", 
      "formation", 
      "band", 
      "energy consumption", 
      "better performance", 
      "devices", 
      "min", 
      "voltage", 
      "method", 
      "means", 
      "performance", 
      "components", 
      "rate", 
      "CDW", 
      "consumption", 
      "end", 
      "purpose", 
      "anion-exchange components", 
      "anion-exchange bands", 
      "sufficient specific ion surface conductivities", 
      "specific ion surface conductivities", 
      "ion surface conductivities", 
      "CDW devices", 
      "pressed membranes", 
      "Mosaic Cation\u2013Anion Exchange Membrane", 
      "Cation\u2013Anion Exchange Membrane"
    ], 
    "name": "Capacitive Deionization of Water with Electrodes Based on Nanoporous Activated Carbon and a Mosaic Cation\u2013Anion Exchange Membrane", 
    "pagination": "68-79", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1136297958"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s2070205121010214"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s2070205121010214", 
      "https://app.dimensions.ai/details/publication/pub.1136297958"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_895.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s2070205121010214"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s2070205121010214'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s2070205121010214'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s2070205121010214'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s2070205121010214'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      22 PREDICATES      90 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s2070205121010214 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author Nac971d13872a41b697a4dda5c66a12d4
4 schema:citation sg:pub.10.1007/978-1-4471-6377-0
5 sg:pub.10.1007/978-1-4757-3058-6
6 sg:pub.10.1007/s10008-013-2271-4
7 sg:pub.10.1023/a:1016019021741
8 sg:pub.10.1023/a:1022924628069
9 sg:pub.10.1023/b:fich.0000012190.87073.86
10 sg:pub.10.1134/s0965544113070086
11 sg:pub.10.1134/s0965544116050078
12 sg:pub.10.1134/s1023193513060141
13 sg:pub.10.1134/s1023193520010061
14 schema:datePublished 2021-01
15 schema:datePublishedReg 2021-01-01
16 schema:description The capacitive deionization of water (CDW) was investigated with the purpose to obtain pure water. To this end, mosaic cation–anion-exchange membranes and activated carbon electrodes were used. The mosaic membranes contained cation- and anion-exchange components embedded in a synthetic-fiber-based matrix. The means of preparation for the pressed mosaic membranes included pressing the cation- and anion-exchange membranes into each other. Another method was via the subsequent formation of cation- and anion-exchange bands in the fibrous matrix (in a banded membrane). The activated carbon electrodes and mosaic membranes possessed sufficient specific ion surface conductivities even in clean water. The specific energy consumption was 31.9 and 111.7 W mol–1 for the CDW devices containing banded and pressed membranes, respectively. Therefore, the banded membrane was preferable for obtaining pure drinking water. It was found that the CDW with the banded mosaic membrane exhibited the best performance at a voltage of 2 V and a solution flow rate of 15 cm3/min.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N8a8fef4554154f7486f77490079aef14
21 N97d6f52183e84b1692c218fa1af43e5d
22 sg:journal.1136666
23 schema:keywords CDW
24 CDW devices
25 Cation–Anion Exchange Membrane
26 Mosaic Cation–Anion Exchange Membrane
27 Nanoporous Activated Carbon
28 activated carbon
29 activated carbon electrodes
30 anion exchange membranes
31 anion-exchange bands
32 anion-exchange components
33 band
34 better performance
35 capacitive deionization
36 carbon
37 carbon electrode
38 cations
39 clean water
40 cm3/min
41 components
42 conductivity
43 consumption
44 deionization
45 devices
46 drinking water
47 electrode
48 end
49 energy consumption
50 exchange membranes
51 fibrous matrix
52 flow rate
53 formation
54 ion surface conductivities
55 matrix
56 means
57 means of preparation
58 membrane
59 method
60 min
61 mosaic membranes
62 performance
63 preparation
64 pressed membranes
65 pure drinking water
66 pure water
67 purpose
68 rate
69 solution flow rate
70 specific energy consumption
71 specific ion surface conductivities
72 subsequent formation
73 sufficient specific ion surface conductivities
74 surface conductivity
75 voltage
76 water
77 schema:name Capacitive Deionization of Water with Electrodes Based on Nanoporous Activated Carbon and a Mosaic Cation–Anion Exchange Membrane
78 schema:pagination 68-79
79 schema:productId Nba28052e369146ca8a653e44a0a45b0a
80 Nce4e3b0b265d453294e470c3f20a1152
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136297958
82 https://doi.org/10.1134/s2070205121010214
83 schema:sdDatePublished 2022-01-01T19:01
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher Nc6f59bbd86c74537b0e7fe7a9f835437
86 schema:url https://doi.org/10.1134/s2070205121010214
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N220823bb15214ac1abd63dd424ba0610 rdf:first sg:person.013073314001.64
91 rdf:rest N27b141e8c49d461ab3c2b231a6caf015
92 N27b141e8c49d461ab3c2b231a6caf015 rdf:first sg:person.014706644725.71
93 rdf:rest rdf:nil
94 N8a8fef4554154f7486f77490079aef14 schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 N97d6f52183e84b1692c218fa1af43e5d schema:volumeNumber 57
97 rdf:type schema:PublicationVolume
98 Nac971d13872a41b697a4dda5c66a12d4 rdf:first sg:person.010662103332.81
99 rdf:rest Nf1a2f923dc0e49cba7d904fc1088d949
100 Nba28052e369146ca8a653e44a0a45b0a schema:name dimensions_id
101 schema:value pub.1136297958
102 rdf:type schema:PropertyValue
103 Nc6f59bbd86c74537b0e7fe7a9f835437 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Nce4e3b0b265d453294e470c3f20a1152 schema:name doi
106 schema:value 10.1134/s2070205121010214
107 rdf:type schema:PropertyValue
108 Nf1a2f923dc0e49cba7d904fc1088d949 rdf:first sg:person.013640774515.23
109 rdf:rest N220823bb15214ac1abd63dd424ba0610
110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
111 schema:name Engineering
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
114 schema:name Resources Engineering and Extractive Metallurgy
115 rdf:type schema:DefinedTerm
116 sg:journal.1136666 schema:issn 0033-1732
117 1608-327X
118 schema:name Protection of Metals and Physical Chemistry of Surfaces
119 schema:publisher Pleiades Publishing
120 rdf:type schema:Periodical
121 sg:person.010662103332.81 schema:affiliation grid-institutes:grid.465278.a
122 schema:familyName Volfkovich
123 schema:givenName Yu. M.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662103332.81
125 rdf:type schema:Person
126 sg:person.013073314001.64 schema:affiliation grid-institutes:grid.465278.a
127 schema:familyName Rychagov
128 schema:givenName A. Yu.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013073314001.64
130 rdf:type schema:Person
131 sg:person.013640774515.23 schema:affiliation grid-institutes:grid.465278.a
132 schema:familyName Mikhalin
133 schema:givenName A. A.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640774515.23
135 rdf:type schema:Person
136 sg:person.014706644725.71 schema:affiliation grid-institutes:grid.78837.33
137 schema:familyName Kardash
138 schema:givenName M. M.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014706644725.71
140 rdf:type schema:Person
141 sg:pub.10.1007/978-1-4471-6377-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000305429
142 https://doi.org/10.1007/978-1-4471-6377-0
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-1-4757-3058-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040777413
145 https://doi.org/10.1007/978-1-4757-3058-6
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s10008-013-2271-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010347057
148 https://doi.org/10.1007/s10008-013-2271-4
149 rdf:type schema:CreativeWork
150 sg:pub.10.1023/a:1016019021741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016120039
151 https://doi.org/10.1023/a:1016019021741
152 rdf:type schema:CreativeWork
153 sg:pub.10.1023/a:1022924628069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010088935
154 https://doi.org/10.1023/a:1022924628069
155 rdf:type schema:CreativeWork
156 sg:pub.10.1023/b:fich.0000012190.87073.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002223016
157 https://doi.org/10.1023/b:fich.0000012190.87073.86
158 rdf:type schema:CreativeWork
159 sg:pub.10.1134/s0965544113070086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035076470
160 https://doi.org/10.1134/s0965544113070086
161 rdf:type schema:CreativeWork
162 sg:pub.10.1134/s0965544116050078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002213048
163 https://doi.org/10.1134/s0965544116050078
164 rdf:type schema:CreativeWork
165 sg:pub.10.1134/s1023193513060141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051566249
166 https://doi.org/10.1134/s1023193513060141
167 rdf:type schema:CreativeWork
168 sg:pub.10.1134/s1023193520010061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126001938
169 https://doi.org/10.1134/s1023193520010061
170 rdf:type schema:CreativeWork
171 grid-institutes:grid.465278.a schema:alternateName Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia
172 schema:name Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia
173 rdf:type schema:Organization
174 grid-institutes:grid.78837.33 schema:alternateName Yuri Gagarin State Technical University of Saratov, 410054, Engels, Russia
175 schema:name Yuri Gagarin State Technical University of Saratov, 410054, Engels, Russia
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...