Supercritical fluid CO2-extraction regeneration of nickel–molybdenum catalyst for hydrotreatment View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01

AUTHORS

Ameer Abed Jaddoa, T. R. Bilalov, F. M. Gumerov, F. R. Gabitov, Z. I. Zaripov, R. S. Yarullin, A. A. Pimerzin, P. A. Nikul’shin

ABSTRACT

Results from studying the supercritical fluid СО2-extraction regeneration of DN-3531 industrial nickel–molybdenum hydrotreatment catalyst in the temperature range of 323.15–383.15 K, at pressures of up to 30 MPa, and with modification of the basic extragent with such polar compounds as chloroform, methanol, ethanol, acetone, and dimethylsulfoxide (DMSO), are presented. The order of modifiers corresponds to the increase in the solubilizing ability of modified supercritical carbon dioxide (SC-СО2) with respect to catalyst- deactivating deposits. With DMSO as the most efficient modifier, however, not only are deactivating compounds removed but nickel and molybdenum as well, considerably reducing the final activity of a regenerated sample. During extraction regeneration, the content of coke in the catalyst is reduced by two-thirds, while the specific surface area and the pore volume grow. The activity of the deactivated catalyst in dibenzothiophene hydrodesulfurization (HDS) and naphthalene hydrogenation grows by several hundred per cent after one-time SC-CO2 treatment and is 2.5 times higher than for a sample regenerated using the traditional oxidative method. More... »

PAGES

31-38

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s2070050417010020

DOI

http://dx.doi.org/10.1134/s2070050417010020

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084608621


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Technology, 10066, Baghdad, Iraq", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Kazan National Research Technological University, 420015, Kazan, Tatarstan, Russia", 
            "University of Technology, 10066, Baghdad, Iraq"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jaddoa", 
        "givenName": "Ameer Abed", 
        "id": "sg:person.016054761131.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016054761131.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kazan National Research Technological University, 420015, Kazan, Tatarstan, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77914.3c", 
          "name": [
            "Kazan National Research Technological University, 420015, Kazan, Tatarstan, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bilalov", 
        "givenName": "T. R.", 
        "id": "sg:person.07505715767.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07505715767.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kazan National Research Technological University, 420015, Kazan, Tatarstan, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77914.3c", 
          "name": [
            "Kazan National Research Technological University, 420015, Kazan, Tatarstan, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gumerov", 
        "givenName": "F. M.", 
        "id": "sg:person.014066560767.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014066560767.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kazan National Research Technological University, 420015, Kazan, Tatarstan, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77914.3c", 
          "name": [
            "Kazan National Research Technological University, 420015, Kazan, Tatarstan, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gabitov", 
        "givenName": "F. R.", 
        "id": "sg:person.011545144405.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011545144405.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kazan National Research Technological University, 420015, Kazan, Tatarstan, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77914.3c", 
          "name": [
            "Kazan National Research Technological University, 420015, Kazan, Tatarstan, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaripov", 
        "givenName": "Z. I.", 
        "id": "sg:person.07422736205.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07422736205.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "OAO Tatneftekhiminvest Holding, 420061, Kazan, Tatarstan, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "OAO Tatneftekhiminvest Holding, 420061, Kazan, Tatarstan, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yarullin", 
        "givenName": "R. S.", 
        "id": "sg:person.014115277651.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115277651.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pimerzin", 
        "givenName": "A. A.", 
        "id": "sg:person.011350646761.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011350646761.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Technical University, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445792.9", 
          "name": [
            "Samara State Technical University, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikul\u2019shin", 
        "givenName": "P. A.", 
        "id": "sg:person.010624064021.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010624064021.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11172-014-0434-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029177978", 
          "https://doi.org/10.1007/s11172-014-0434-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s2070050413030033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041868731", 
          "https://doi.org/10.1134/s2070050413030033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1990793111070086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029891131", 
          "https://doi.org/10.1134/s1990793111070086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023233018539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008933451", 
          "https://doi.org/10.1023/a:1023233018539"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01", 
    "datePublishedReg": "2017-01-01", 
    "description": "Results from studying the supercritical fluid \u0421\u041e2-extraction regeneration of DN-3531 industrial nickel\u2013molybdenum hydrotreatment catalyst in the temperature range of 323.15\u2013383.15 K, at pressures of up to 30 MPa, and with modification of the basic extragent with such polar compounds as chloroform, methanol, ethanol, acetone, and dimethylsulfoxide (DMSO), are presented. The order of modifiers corresponds to the increase in the solubilizing ability of modified supercritical carbon dioxide (SC-\u0421\u041e2) with respect to catalyst- deactivating deposits. With DMSO as the most efficient modifier, however, not only are deactivating compounds removed but nickel and molybdenum as well, considerably reducing the final activity of a regenerated sample. During extraction regeneration, the content of coke in the catalyst is reduced by two-thirds, while the specific surface area and the pore volume grow. The activity of the deactivated catalyst in dibenzothiophene hydrodesulfurization (HDS) and naphthalene hydrogenation grows by several hundred per cent after one-time SC-CO2 treatment and is 2.5 times higher than for a sample regenerated using the traditional oxidative method.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s2070050417010020", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048926", 
        "issn": [
          "2070-0504", 
          "2070-0555"
        ], 
        "name": "Catalysis in Industry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "content of coke", 
      "specific surface area", 
      "supercritical carbon dioxide", 
      "such polar compounds", 
      "pore volume", 
      "nickel-molybdenum catalysts", 
      "surface area", 
      "temperature range", 
      "carbon dioxide", 
      "oxidative method", 
      "MPa", 
      "order of modifiers", 
      "polar compounds", 
      "coke", 
      "nickel", 
      "extragent", 
      "catalyst", 
      "hydrotreatment catalysts", 
      "hydrotreatment", 
      "molybdenum", 
      "dioxide", 
      "regeneration", 
      "hydrodesulfurization", 
      "pressure", 
      "range", 
      "acetone", 
      "order", 
      "naphthalene hydrogenation", 
      "dibenzothiophene hydrodesulfurization", 
      "method", 
      "content", 
      "methanol", 
      "ethanol", 
      "modifiers", 
      "samples", 
      "volume", 
      "hydrogenation", 
      "modification", 
      "results", 
      "CO2 treatment", 
      "increase", 
      "SC", 
      "respect", 
      "area", 
      "time", 
      "chloroform", 
      "deposits", 
      "compounds", 
      "dimethylsulfoxide", 
      "ability", 
      "final activity", 
      "cent", 
      "treatment", 
      "activity", 
      "two-thirds", 
      "DN-3531 industrial nickel\u2013molybdenum hydrotreatment catalyst", 
      "industrial nickel\u2013molybdenum hydrotreatment catalyst", 
      "nickel\u2013molybdenum hydrotreatment catalyst", 
      "basic extragent", 
      "catalyst- deactivating deposits", 
      "extraction regeneration", 
      "one-time SC", 
      "traditional oxidative method", 
      "Supercritical fluid CO2-extraction regeneration", 
      "fluid CO2-extraction regeneration", 
      "CO2-extraction regeneration"
    ], 
    "name": "Supercritical fluid CO2-extraction regeneration of nickel\u2013molybdenum catalyst for hydrotreatment", 
    "pagination": "31-38", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084608621"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s2070050417010020"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s2070050417010020", 
      "https://app.dimensions.ai/details/publication/pub.1084608621"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_728.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s2070050417010020"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s2070050417010020'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s2070050417010020'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s2070050417010020'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s2070050417010020'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      22 PREDICATES      96 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s2070050417010020 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N137c5a38afd94b10bdab1a7d59aa54de
4 schema:citation sg:pub.10.1007/s11172-014-0434-9
5 sg:pub.10.1023/a:1023233018539
6 sg:pub.10.1134/s1990793111070086
7 sg:pub.10.1134/s2070050413030033
8 schema:datePublished 2017-01
9 schema:datePublishedReg 2017-01-01
10 schema:description Results from studying the supercritical fluid СО2-extraction regeneration of DN-3531 industrial nickel–molybdenum hydrotreatment catalyst in the temperature range of 323.15–383.15 K, at pressures of up to 30 MPa, and with modification of the basic extragent with such polar compounds as chloroform, methanol, ethanol, acetone, and dimethylsulfoxide (DMSO), are presented. The order of modifiers corresponds to the increase in the solubilizing ability of modified supercritical carbon dioxide (SC-СО2) with respect to catalyst- deactivating deposits. With DMSO as the most efficient modifier, however, not only are deactivating compounds removed but nickel and molybdenum as well, considerably reducing the final activity of a regenerated sample. During extraction regeneration, the content of coke in the catalyst is reduced by two-thirds, while the specific surface area and the pore volume grow. The activity of the deactivated catalyst in dibenzothiophene hydrodesulfurization (HDS) and naphthalene hydrogenation grows by several hundred per cent after one-time SC-CO2 treatment and is 2.5 times higher than for a sample regenerated using the traditional oxidative method.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N214c09f873fd45a88863a99b97ba1ce3
15 N6e777b478b6c4e0d94930323fbddc611
16 sg:journal.1048926
17 schema:keywords CO2 treatment
18 CO2-extraction regeneration
19 DN-3531 industrial nickel–molybdenum hydrotreatment catalyst
20 MPa
21 SC
22 Supercritical fluid CO2-extraction regeneration
23 ability
24 acetone
25 activity
26 area
27 basic extragent
28 carbon dioxide
29 catalyst
30 catalyst- deactivating deposits
31 cent
32 chloroform
33 coke
34 compounds
35 content
36 content of coke
37 deposits
38 dibenzothiophene hydrodesulfurization
39 dimethylsulfoxide
40 dioxide
41 ethanol
42 extraction regeneration
43 extragent
44 final activity
45 fluid CO2-extraction regeneration
46 hydrodesulfurization
47 hydrogenation
48 hydrotreatment
49 hydrotreatment catalysts
50 increase
51 industrial nickel–molybdenum hydrotreatment catalyst
52 methanol
53 method
54 modification
55 modifiers
56 molybdenum
57 naphthalene hydrogenation
58 nickel
59 nickel-molybdenum catalysts
60 nickel–molybdenum hydrotreatment catalyst
61 one-time SC
62 order
63 order of modifiers
64 oxidative method
65 polar compounds
66 pore volume
67 pressure
68 range
69 regeneration
70 respect
71 results
72 samples
73 specific surface area
74 such polar compounds
75 supercritical carbon dioxide
76 surface area
77 temperature range
78 time
79 traditional oxidative method
80 treatment
81 two-thirds
82 volume
83 schema:name Supercritical fluid CO2-extraction regeneration of nickel–molybdenum catalyst for hydrotreatment
84 schema:pagination 31-38
85 schema:productId N44abc8916a7e43b7a8edb868c1b78d60
86 Nef7bf26eb89541a8a23cf3e555342a95
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084608621
88 https://doi.org/10.1134/s2070050417010020
89 schema:sdDatePublished 2022-01-01T18:41
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N79669354c4ae40ddb1e88ff85fa19665
92 schema:url https://doi.org/10.1134/s2070050417010020
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N08541706b7db44d78e233ce766b48793 rdf:first sg:person.011545144405.56
97 rdf:rest Nc363de4f68dc48d8855a794c0d31a29d
98 N137c5a38afd94b10bdab1a7d59aa54de rdf:first sg:person.016054761131.27
99 rdf:rest N6eacebfa407242ae810c7b6effc14cd9
100 N214c09f873fd45a88863a99b97ba1ce3 schema:volumeNumber 9
101 rdf:type schema:PublicationVolume
102 N44abc8916a7e43b7a8edb868c1b78d60 schema:name dimensions_id
103 schema:value pub.1084608621
104 rdf:type schema:PropertyValue
105 N496bb42cf4e543af840afed717316ef3 rdf:first sg:person.014066560767.64
106 rdf:rest N08541706b7db44d78e233ce766b48793
107 N53c485c6e16f493e861152e8f56a6139 rdf:first sg:person.010624064021.26
108 rdf:rest rdf:nil
109 N6e777b478b6c4e0d94930323fbddc611 schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 N6eacebfa407242ae810c7b6effc14cd9 rdf:first sg:person.07505715767.68
112 rdf:rest N496bb42cf4e543af840afed717316ef3
113 N79669354c4ae40ddb1e88ff85fa19665 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nc363de4f68dc48d8855a794c0d31a29d rdf:first sg:person.07422736205.41
116 rdf:rest Ne77a9d1a8aa2451baace516b71631c2d
117 Ne77a9d1a8aa2451baace516b71631c2d rdf:first sg:person.014115277651.30
118 rdf:rest Nea1d858d4be84b8fb4733f2c432e2817
119 Nea1d858d4be84b8fb4733f2c432e2817 rdf:first sg:person.011350646761.09
120 rdf:rest N53c485c6e16f493e861152e8f56a6139
121 Nef7bf26eb89541a8a23cf3e555342a95 schema:name doi
122 schema:value 10.1134/s2070050417010020
123 rdf:type schema:PropertyValue
124 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
125 schema:name Chemical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
128 schema:name Physical Chemistry (incl. Structural)
129 rdf:type schema:DefinedTerm
130 sg:journal.1048926 schema:issn 2070-0504
131 2070-0555
132 schema:name Catalysis in Industry
133 schema:publisher Pleiades Publishing
134 rdf:type schema:Periodical
135 sg:person.010624064021.26 schema:affiliation grid-institutes:grid.445792.9
136 schema:familyName Nikul’shin
137 schema:givenName P. A.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010624064021.26
139 rdf:type schema:Person
140 sg:person.011350646761.09 schema:affiliation grid-institutes:grid.445792.9
141 schema:familyName Pimerzin
142 schema:givenName A. A.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011350646761.09
144 rdf:type schema:Person
145 sg:person.011545144405.56 schema:affiliation grid-institutes:grid.77914.3c
146 schema:familyName Gabitov
147 schema:givenName F. R.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011545144405.56
149 rdf:type schema:Person
150 sg:person.014066560767.64 schema:affiliation grid-institutes:grid.77914.3c
151 schema:familyName Gumerov
152 schema:givenName F. M.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014066560767.64
154 rdf:type schema:Person
155 sg:person.014115277651.30 schema:affiliation grid-institutes:None
156 schema:familyName Yarullin
157 schema:givenName R. S.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115277651.30
159 rdf:type schema:Person
160 sg:person.016054761131.27 schema:affiliation grid-institutes:None
161 schema:familyName Jaddoa
162 schema:givenName Ameer Abed
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016054761131.27
164 rdf:type schema:Person
165 sg:person.07422736205.41 schema:affiliation grid-institutes:grid.77914.3c
166 schema:familyName Zaripov
167 schema:givenName Z. I.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07422736205.41
169 rdf:type schema:Person
170 sg:person.07505715767.68 schema:affiliation grid-institutes:grid.77914.3c
171 schema:familyName Bilalov
172 schema:givenName T. R.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07505715767.68
174 rdf:type schema:Person
175 sg:pub.10.1007/s11172-014-0434-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029177978
176 https://doi.org/10.1007/s11172-014-0434-9
177 rdf:type schema:CreativeWork
178 sg:pub.10.1023/a:1023233018539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008933451
179 https://doi.org/10.1023/a:1023233018539
180 rdf:type schema:CreativeWork
181 sg:pub.10.1134/s1990793111070086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029891131
182 https://doi.org/10.1134/s1990793111070086
183 rdf:type schema:CreativeWork
184 sg:pub.10.1134/s2070050413030033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041868731
185 https://doi.org/10.1134/s2070050413030033
186 rdf:type schema:CreativeWork
187 grid-institutes:None schema:alternateName OAO Tatneftekhiminvest Holding, 420061, Kazan, Tatarstan, Russia
188 University of Technology, 10066, Baghdad, Iraq
189 schema:name Kazan National Research Technological University, 420015, Kazan, Tatarstan, Russia
190 OAO Tatneftekhiminvest Holding, 420061, Kazan, Tatarstan, Russia
191 University of Technology, 10066, Baghdad, Iraq
192 rdf:type schema:Organization
193 grid-institutes:grid.445792.9 schema:alternateName Samara State Technical University, 443100, Samara, Russia
194 schema:name Samara State Technical University, 443100, Samara, Russia
195 rdf:type schema:Organization
196 grid-institutes:grid.77914.3c schema:alternateName Kazan National Research Technological University, 420015, Kazan, Tatarstan, Russia
197 schema:name Kazan National Research Technological University, 420015, Kazan, Tatarstan, Russia
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...