Silica-alumina based nickel-molybdenum catalysts for vacuum gas oil hydrocracking aimed at a higher diesel fraction yield View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-07

AUTHORS

P. P. Dik, O. V. Klimov, S. V. Budukva, K. A. Leonova, V. Yu. Pereyma, E. Yu. Gerasimov, I. G. Danilova, A. S. Noskov

ABSTRACT

Nickel-molybdenum hydrocracking catalysts based on amorphous silica-aluminas (ASAs) with Si/Al = 0.3–1.5 have been prepared using chemicals and methods available for catalyst plants. The acidic properties of the ASA surface have been investigated by IR spectroscopy of adsorbed CO, and it has been demonstrated that the Si/Al ratio has an effect on the concentration and strength of Brønsted and Lewis acid sites in the ASA. The catalysts have been characterized by low-temperature nitrogen adsorption and transmission electron microscopy, and it was found that the Si/Al ratio in the ASA has a considerable effect on the textural properties of the catalysts and only a slight effect on the particle size of the sulfide active component. The catalysts have been tested in vacuum gas oil hydrocracking in a laboratory-scale high-pressure flow reactor under typical industrial hydrocracking conditions. The highest diesel fraction yield (>60 wt % at 400°C) has been obtained with the catalyst based on the Si/Al = 0.9 ASA, which has the strongest Brønsted acid sites. With the catalysts based on the Si/Al = 0.3 and 1.5 ASAs, the diesel fraction yield is much lower. This may be due to the lower concentration and strength of acid sites in these catalysts and their smaller specific surface area. The NiMo catalyst based on Si/Al ≈ 0.9 ASA is recommended for industrial use in refineries aimed at obtaining the maximum possible yield of low-sulfur, high-cetane, diesel fuels. More... »

PAGES

231-238

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s2070050414030076

DOI

http://dx.doi.org/10.1134/s2070050414030076

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025513661


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dik", 
        "givenName": "P. P.", 
        "id": "sg:person.015754246533.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015754246533.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klimov", 
        "givenName": "O. V.", 
        "id": "sg:person.011066436633.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066436633.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Budukva", 
        "givenName": "S. V.", 
        "id": "sg:person.015525301476.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015525301476.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leonova", 
        "givenName": "K. A.", 
        "id": "sg:person.015457166276.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015457166276.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pereyma", 
        "givenName": "V. Yu.", 
        "id": "sg:person.07617610676.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07617610676.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerasimov", 
        "givenName": "E. Yu.", 
        "id": "sg:person.010740265637.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010740265637.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danilova", 
        "givenName": "I. G.", 
        "id": "sg:person.0741574275.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741574275.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noskov", 
        "givenName": "A. S.", 
        "id": "sg:person.015441675025.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015441675025.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10450-013-9500-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002705618", 
          "https://doi.org/10.1007/s10450-013-9500-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10562-008-9784-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042692814", 
          "https://doi.org/10.1007/s10562-008-9784-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0023158411030098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037554875", 
          "https://doi.org/10.1134/s0023158411030098"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-07", 
    "datePublishedReg": "2014-07-01", 
    "description": "Nickel-molybdenum hydrocracking catalysts based on amorphous silica-aluminas (ASAs) with Si/Al = 0.3\u20131.5 have been prepared using chemicals and methods available for catalyst plants. The acidic properties of the ASA surface have been investigated by IR spectroscopy of adsorbed CO, and it has been demonstrated that the Si/Al ratio has an effect on the concentration and strength of Br\u00f8nsted and Lewis acid sites in the ASA. The catalysts have been characterized by low-temperature nitrogen adsorption and transmission electron microscopy, and it was found that the Si/Al ratio in the ASA has a considerable effect on the textural properties of the catalysts and only a slight effect on the particle size of the sulfide active component. The catalysts have been tested in vacuum gas oil hydrocracking in a laboratory-scale high-pressure flow reactor under typical industrial hydrocracking conditions. The highest diesel fraction yield (>60 wt % at 400\u00b0C) has been obtained with the catalyst based on the Si/Al = 0.9 ASA, which has the strongest Br\u00f8nsted acid sites. With the catalysts based on the Si/Al = 0.3 and 1.5 ASAs, the diesel fraction yield is much lower. This may be due to the lower concentration and strength of acid sites in these catalysts and their smaller specific surface area. The NiMo catalyst based on Si/Al \u2248 0.9 ASA is recommended for industrial use in refineries aimed at obtaining the maximum possible yield of low-sulfur, high-cetane, diesel fuels.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s2070050414030076", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048926", 
        "issn": [
          "2070-0504", 
          "2070-0555"
        ], 
        "name": "Catalysis in Industry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "amorphous silica-alumina", 
      "Si/Al", 
      "Si/Al ratio", 
      "silica-alumina", 
      "acid sites", 
      "low-temperature nitrogen adsorption", 
      "nickel-molybdenum catalysts", 
      "Al ratio", 
      "high-pressure flow reactor", 
      "Vacuum Gas Oil Hydrocracking", 
      "sulfide active component", 
      "smaller specific surface area", 
      "strength of Br\u00f8nsted", 
      "Lewis acid sites", 
      "fraction yield", 
      "specific surface area", 
      "vacuum gas oil", 
      "transmission electron microscopy", 
      "nitrogen adsorption", 
      "ASA surface", 
      "IR spectroscopy", 
      "NiMo catalysts", 
      "hydrocracking catalysts", 
      "adsorbed CO", 
      "acidic properties", 
      "catalyst", 
      "flow reactor", 
      "oil hydrocracking", 
      "textural properties", 
      "gas oil", 
      "surface area", 
      "diesel fuel", 
      "particle size", 
      "catalyst plant", 
      "electron microscopy", 
      "maximum possible yield", 
      "industrial use", 
      "active components", 
      "considerable effect", 
      "yield", 
      "Br\u00f8nsted", 
      "adsorption", 
      "hydrocracking", 
      "low concentrations", 
      "spectroscopy", 
      "strength", 
      "properties", 
      "possible yield", 
      "CO", 
      "reactor", 
      "fuel", 
      "chemicals", 
      "refinery", 
      "al", 
      "microscopy", 
      "concentration", 
      "slight effect", 
      "surface", 
      "oil", 
      "ratio", 
      "sites", 
      "effect", 
      "conditions", 
      "size", 
      "method", 
      "components", 
      "plants", 
      "area", 
      "use", 
      "Nickel-molybdenum hydrocracking catalysts", 
      "laboratory-scale high-pressure flow reactor", 
      "typical industrial hydrocracking conditions", 
      "industrial hydrocracking conditions", 
      "hydrocracking conditions", 
      "highest diesel fraction yield", 
      "diesel fraction yield", 
      "gas oil hydrocracking"
    ], 
    "name": "Silica-alumina based nickel-molybdenum catalysts for vacuum gas oil hydrocracking aimed at a higher diesel fraction yield", 
    "pagination": "231-238", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025513661"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s2070050414030076"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s2070050414030076", 
      "https://app.dimensions.ai/details/publication/pub.1025513661"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_621.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s2070050414030076"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s2070050414030076'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s2070050414030076'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s2070050414030076'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s2070050414030076'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      22 PREDICATES      106 URIs      95 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s2070050414030076 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N5b3657ebedce47bd8ac84f4571411bb7
4 schema:citation sg:pub.10.1007/s10450-013-9500-0
5 sg:pub.10.1007/s10562-008-9784-y
6 sg:pub.10.1134/s0023158411030098
7 schema:datePublished 2014-07
8 schema:datePublishedReg 2014-07-01
9 schema:description Nickel-molybdenum hydrocracking catalysts based on amorphous silica-aluminas (ASAs) with Si/Al = 0.3–1.5 have been prepared using chemicals and methods available for catalyst plants. The acidic properties of the ASA surface have been investigated by IR spectroscopy of adsorbed CO, and it has been demonstrated that the Si/Al ratio has an effect on the concentration and strength of Brønsted and Lewis acid sites in the ASA. The catalysts have been characterized by low-temperature nitrogen adsorption and transmission electron microscopy, and it was found that the Si/Al ratio in the ASA has a considerable effect on the textural properties of the catalysts and only a slight effect on the particle size of the sulfide active component. The catalysts have been tested in vacuum gas oil hydrocracking in a laboratory-scale high-pressure flow reactor under typical industrial hydrocracking conditions. The highest diesel fraction yield (>60 wt % at 400°C) has been obtained with the catalyst based on the Si/Al = 0.9 ASA, which has the strongest Brønsted acid sites. With the catalysts based on the Si/Al = 0.3 and 1.5 ASAs, the diesel fraction yield is much lower. This may be due to the lower concentration and strength of acid sites in these catalysts and their smaller specific surface area. The NiMo catalyst based on Si/Al ≈ 0.9 ASA is recommended for industrial use in refineries aimed at obtaining the maximum possible yield of low-sulfur, high-cetane, diesel fuels.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N03eb69e203c9485cb5283fd6088f9a03
14 N8519e9fc16a84f45ad585a5c64d5bca6
15 sg:journal.1048926
16 schema:keywords ASA surface
17 Al ratio
18 Brønsted
19 CO
20 IR spectroscopy
21 Lewis acid sites
22 NiMo catalysts
23 Nickel-molybdenum hydrocracking catalysts
24 Si/Al
25 Si/Al ratio
26 Vacuum Gas Oil Hydrocracking
27 acid sites
28 acidic properties
29 active components
30 adsorbed CO
31 adsorption
32 al
33 amorphous silica-alumina
34 area
35 catalyst
36 catalyst plant
37 chemicals
38 components
39 concentration
40 conditions
41 considerable effect
42 diesel fraction yield
43 diesel fuel
44 effect
45 electron microscopy
46 flow reactor
47 fraction yield
48 fuel
49 gas oil
50 gas oil hydrocracking
51 high-pressure flow reactor
52 highest diesel fraction yield
53 hydrocracking
54 hydrocracking catalysts
55 hydrocracking conditions
56 industrial hydrocracking conditions
57 industrial use
58 laboratory-scale high-pressure flow reactor
59 low concentrations
60 low-temperature nitrogen adsorption
61 maximum possible yield
62 method
63 microscopy
64 nickel-molybdenum catalysts
65 nitrogen adsorption
66 oil
67 oil hydrocracking
68 particle size
69 plants
70 possible yield
71 properties
72 ratio
73 reactor
74 refinery
75 silica-alumina
76 sites
77 size
78 slight effect
79 smaller specific surface area
80 specific surface area
81 spectroscopy
82 strength
83 strength of Brønsted
84 sulfide active component
85 surface
86 surface area
87 textural properties
88 transmission electron microscopy
89 typical industrial hydrocracking conditions
90 use
91 vacuum gas oil
92 yield
93 schema:name Silica-alumina based nickel-molybdenum catalysts for vacuum gas oil hydrocracking aimed at a higher diesel fraction yield
94 schema:pagination 231-238
95 schema:productId N8a8fa4b4d04f4729a2fecb770443df2a
96 N9786f37db33f4b59a2f4923edc100291
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025513661
98 https://doi.org/10.1134/s2070050414030076
99 schema:sdDatePublished 2021-12-01T19:31
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher Nf10c67e4c141484189a735a62b798b55
102 schema:url https://doi.org/10.1134/s2070050414030076
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N03eb69e203c9485cb5283fd6088f9a03 schema:volumeNumber 6
107 rdf:type schema:PublicationVolume
108 N0c4a782e78a44f9ab93084e54c2194d3 rdf:first sg:person.015525301476.90
109 rdf:rest N14b8094fdc9e46f39ff5b2cfe0f86dd8
110 N14b8094fdc9e46f39ff5b2cfe0f86dd8 rdf:first sg:person.015457166276.34
111 rdf:rest Nc82491d28d8d4585baf1583a8d647520
112 N477a682690424f3eb2a7d77634dffb95 rdf:first sg:person.0741574275.56
113 rdf:rest Nc4ad032f119a4485a57c4d5a385d0902
114 N5b3657ebedce47bd8ac84f4571411bb7 rdf:first sg:person.015754246533.21
115 rdf:rest Nc9169948993c46af8ce253ae146b780f
116 N8519e9fc16a84f45ad585a5c64d5bca6 schema:issueNumber 3
117 rdf:type schema:PublicationIssue
118 N8a8fa4b4d04f4729a2fecb770443df2a schema:name doi
119 schema:value 10.1134/s2070050414030076
120 rdf:type schema:PropertyValue
121 N9786f37db33f4b59a2f4923edc100291 schema:name dimensions_id
122 schema:value pub.1025513661
123 rdf:type schema:PropertyValue
124 Nc4ad032f119a4485a57c4d5a385d0902 rdf:first sg:person.015441675025.43
125 rdf:rest rdf:nil
126 Nc82491d28d8d4585baf1583a8d647520 rdf:first sg:person.07617610676.37
127 rdf:rest Ne1c5e24f7c344f0190081ab39d0e0ad6
128 Nc9169948993c46af8ce253ae146b780f rdf:first sg:person.011066436633.07
129 rdf:rest N0c4a782e78a44f9ab93084e54c2194d3
130 Ne1c5e24f7c344f0190081ab39d0e0ad6 rdf:first sg:person.010740265637.30
131 rdf:rest N477a682690424f3eb2a7d77634dffb95
132 Nf10c67e4c141484189a735a62b798b55 schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
135 schema:name Chemical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
138 schema:name Physical Chemistry (incl. Structural)
139 rdf:type schema:DefinedTerm
140 sg:journal.1048926 schema:issn 2070-0504
141 2070-0555
142 schema:name Catalysis in Industry
143 schema:publisher Pleiades Publishing
144 rdf:type schema:Periodical
145 sg:person.010740265637.30 schema:affiliation grid-institutes:grid.415877.8
146 schema:familyName Gerasimov
147 schema:givenName E. Yu.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010740265637.30
149 rdf:type schema:Person
150 sg:person.011066436633.07 schema:affiliation grid-institutes:grid.415877.8
151 schema:familyName Klimov
152 schema:givenName O. V.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066436633.07
154 rdf:type schema:Person
155 sg:person.015441675025.43 schema:affiliation grid-institutes:grid.415877.8
156 schema:familyName Noskov
157 schema:givenName A. S.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015441675025.43
159 rdf:type schema:Person
160 sg:person.015457166276.34 schema:affiliation grid-institutes:grid.415877.8
161 schema:familyName Leonova
162 schema:givenName K. A.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015457166276.34
164 rdf:type schema:Person
165 sg:person.015525301476.90 schema:affiliation grid-institutes:grid.415877.8
166 schema:familyName Budukva
167 schema:givenName S. V.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015525301476.90
169 rdf:type schema:Person
170 sg:person.015754246533.21 schema:affiliation grid-institutes:grid.415877.8
171 schema:familyName Dik
172 schema:givenName P. P.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015754246533.21
174 rdf:type schema:Person
175 sg:person.0741574275.56 schema:affiliation grid-institutes:grid.415877.8
176 schema:familyName Danilova
177 schema:givenName I. G.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741574275.56
179 rdf:type schema:Person
180 sg:person.07617610676.37 schema:affiliation grid-institutes:grid.415877.8
181 schema:familyName Pereyma
182 schema:givenName V. Yu.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07617610676.37
184 rdf:type schema:Person
185 sg:pub.10.1007/s10450-013-9500-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002705618
186 https://doi.org/10.1007/s10450-013-9500-0
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s10562-008-9784-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042692814
189 https://doi.org/10.1007/s10562-008-9784-y
190 rdf:type schema:CreativeWork
191 sg:pub.10.1134/s0023158411030098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037554875
192 https://doi.org/10.1134/s0023158411030098
193 rdf:type schema:CreativeWork
194 grid-institutes:grid.415877.8 schema:alternateName Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia
195 schema:name Boreskov Institute of Catalysis, Russian Academy of Sciences, 630090, Novosibirsk, Russia
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...