Bimetallic Au-Cu/CeO2 catalyst: Synthesis, structure, and catalytic properties in the CO preferential oxidation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-01

AUTHORS

D. I. Potemkin, P. V. Snytnikov, E. Yu. Semitut, P. E. Plyusnin, Yu. V. Shubin, V. A. Sobyanin

ABSTRACT

The preparation of bimetallic Au-Cu catalysts via the decomposition of the double complex salt [Au(en)2]2[Cu(C2O4)2]3 · 8H2O is considered. It is found that this method of preparation allows us to selectively obtain Au0.4Cu0.6 solid solution nanoparticles on the surface of a support. The composition of the particles corresponds to the stoichiometry of the double complex salt. The properties of bimetallic Au-Cu/CeO2 catalyst and monometallic Au/CeO2 and Cu/CeO2 catalysts were studied during the preferential oxidation of CO in a mixture containing CO2 and H2O. The experiments were performed in a catalytic flow system within a temperature range of 50–250°C with a mixture of the following composition, vol %: CO, 1; O2, 0.6; H2O, 10; CO2, 20; H2, 60; and the balance, He. The weight hourly space velocity (WHSV) was 276000 cm3/(g h). The bimetallic catalyst made it possible to oxidize a considerably larger amount of CO with higher selectivity with CO2 and H2O in the mixture, relative to the monometallic catalysts. The preferential oxidation of carbon monoxide in the presence of hydrogen is a promising method for the deep purification of hydrogen-containing gas mixtures in order to remove carbon monoxide. The purified hydrogen-containing gas can be used to feed portable power units based on low-temperature proton-exchange membrane fuel cells, for the synthesis of ammonia, and for hydrogenation in fine organic synthesis. More... »

PAGES

36-43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s2070050414010073

DOI

http://dx.doi.org/10.1134/s2070050414010073

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044570567


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Potemkin", 
        "givenName": "D. I.", 
        "id": "sg:person.016234735001.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016234735001.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
            "Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Snytnikov", 
        "givenName": "P. V.", 
        "id": "sg:person.015444762066.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015444762066.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Novosibirsk State University, 630090, Novosibirsk, Russia", 
            "Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semitut", 
        "givenName": "E. Yu.", 
        "id": "sg:person.013173562064.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173562064.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Novosibirsk State University, 630090, Novosibirsk, Russia", 
            "Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plyusnin", 
        "givenName": "P. E.", 
        "id": "sg:person.0643531001.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643531001.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Novosibirsk State University, 630090, Novosibirsk, Russia", 
            "Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shubin", 
        "givenName": "Yu. V.", 
        "id": "sg:person.012641166115.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012641166115.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sobyanin", 
        "givenName": "V. A.", 
        "id": "sg:person.011055206076.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011055206076.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0023158407020127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040399394", 
          "https://doi.org/10.1134/s0023158407020127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0023158410010192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048906039", 
          "https://doi.org/10.1134/s0023158410010192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s002247661105012x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030730599", 
          "https://doi.org/10.1134/s002247661105012x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-01", 
    "datePublishedReg": "2014-01-01", 
    "description": "The preparation of bimetallic Au-Cu catalysts via the decomposition of the double complex salt [Au(en)2]2[Cu(C2O4)2]3 \u00b7 8H2O is considered. It is found that this method of preparation allows us to selectively obtain Au0.4Cu0.6 solid solution nanoparticles on the surface of a support. The composition of the particles corresponds to the stoichiometry of the double complex salt. The properties of bimetallic Au-Cu/CeO2 catalyst and monometallic Au/CeO2 and Cu/CeO2 catalysts were studied during the preferential oxidation of CO in a mixture containing CO2 and H2O. The experiments were performed in a catalytic flow system within a temperature range of 50\u2013250\u00b0C with a mixture of the following composition, vol %: CO, 1; O2, 0.6; H2O, 10; CO2, 20; H2, 60; and the balance, He. The weight hourly space velocity (WHSV) was 276000 cm3/(g h). The bimetallic catalyst made it possible to oxidize a considerably larger amount of CO with higher selectivity with CO2 and H2O in the mixture, relative to the monometallic catalysts. The preferential oxidation of carbon monoxide in the presence of hydrogen is a promising method for the deep purification of hydrogen-containing gas mixtures in order to remove carbon monoxide. The purified hydrogen-containing gas can be used to feed portable power units based on low-temperature proton-exchange membrane fuel cells, for the synthesis of ammonia, and for hydrogenation in fine organic synthesis.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s2070050414010073", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048926", 
        "issn": [
          "2070-0504", 
          "2070-0555"
        ], 
        "name": "Catalysis in Industry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "double complex salts", 
      "weight hourly space velocity", 
      "preferential oxidation", 
      "CeO2 catalyst", 
      "low-temperature proton-exchange membrane fuel cells", 
      "complex salts", 
      "Cu/CeO2 catalyst", 
      "proton-exchange membrane fuel cells", 
      "bimetallic Au-Cu", 
      "fine organic synthesis", 
      "CO preferential oxidation", 
      "Au/CeO2", 
      "hydrogen-containing gas", 
      "synthesis of ammonia", 
      "catalytic flow system", 
      "solid solution nanoparticles", 
      "hydrogen-containing gas mixtures", 
      "membrane fuel cells", 
      "hourly space velocity", 
      "method of preparation", 
      "presence of hydrogen", 
      "carbon monoxide", 
      "portable power unit", 
      "organic synthesis", 
      "monometallic catalysts", 
      "bimetallic catalysts", 
      "catalytic properties", 
      "high selectivity", 
      "fuel cells", 
      "deep purification", 
      "catalyst", 
      "space velocity", 
      "oxidation", 
      "synthesis", 
      "CO", 
      "gas mixture", 
      "mixture", 
      "H2O", 
      "salt", 
      "Au-Cu", 
      "temperature range", 
      "CO2", 
      "preparation", 
      "monoxide", 
      "promising method", 
      "flow system", 
      "nanoparticles", 
      "hydrogenation", 
      "CeO2", 
      "properties", 
      "selectivity", 
      "hydrogen", 
      "composition", 
      "stoichiometry", 
      "H2O.", 
      "H2", 
      "ammonia", 
      "O2", 
      "purification", 
      "surface", 
      "particles", 
      "decomposition", 
      "gas", 
      "structure", 
      "large amount", 
      "method", 
      "vol", 
      "range", 
      "amount", 
      "presence", 
      "power unit", 
      "units", 
      "experiments", 
      "order", 
      "system", 
      "support", 
      "cells", 
      "balance", 
      "velocity", 
      "solution nanoparticles", 
      "bimetallic Au-Cu/CeO2 catalyst", 
      "Au-Cu/CeO2 catalyst", 
      "monometallic Au/CeO2"
    ], 
    "name": "Bimetallic Au-Cu/CeO2 catalyst: Synthesis, structure, and catalytic properties in the CO preferential oxidation", 
    "pagination": "36-43", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044570567"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s2070050414010073"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s2070050414010073", 
      "https://app.dimensions.ai/details/publication/pub.1044570567"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_633.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s2070050414010073"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s2070050414010073'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s2070050414010073'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s2070050414010073'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s2070050414010073'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      22 PREDICATES      114 URIs      101 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s2070050414010073 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:0303
4 anzsrc-for:0306
5 schema:author N1a97f39fc8ae4947b46eafbf8fbfb6f2
6 schema:citation sg:pub.10.1134/s002247661105012x
7 sg:pub.10.1134/s0023158407020127
8 sg:pub.10.1134/s0023158410010192
9 schema:datePublished 2014-01
10 schema:datePublishedReg 2014-01-01
11 schema:description The preparation of bimetallic Au-Cu catalysts via the decomposition of the double complex salt [Au(en)2]2[Cu(C2O4)2]3 · 8H2O is considered. It is found that this method of preparation allows us to selectively obtain Au0.4Cu0.6 solid solution nanoparticles on the surface of a support. The composition of the particles corresponds to the stoichiometry of the double complex salt. The properties of bimetallic Au-Cu/CeO2 catalyst and monometallic Au/CeO2 and Cu/CeO2 catalysts were studied during the preferential oxidation of CO in a mixture containing CO2 and H2O. The experiments were performed in a catalytic flow system within a temperature range of 50–250°C with a mixture of the following composition, vol %: CO, 1; O2, 0.6; H2O, 10; CO2, 20; H2, 60; and the balance, He. The weight hourly space velocity (WHSV) was 276000 cm3/(g h). The bimetallic catalyst made it possible to oxidize a considerably larger amount of CO with higher selectivity with CO2 and H2O in the mixture, relative to the monometallic catalysts. The preferential oxidation of carbon monoxide in the presence of hydrogen is a promising method for the deep purification of hydrogen-containing gas mixtures in order to remove carbon monoxide. The purified hydrogen-containing gas can be used to feed portable power units based on low-temperature proton-exchange membrane fuel cells, for the synthesis of ammonia, and for hydrogenation in fine organic synthesis.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N053ae5465595474b89c472f63f72120b
16 Nb9c45737bfdd46199d7a034d9d091779
17 sg:journal.1048926
18 schema:keywords Au-Cu
19 Au-Cu/CeO2 catalyst
20 Au/CeO2
21 CO
22 CO preferential oxidation
23 CO2
24 CeO2
25 CeO2 catalyst
26 Cu/CeO2 catalyst
27 H2
28 H2O
29 H2O.
30 O2
31 ammonia
32 amount
33 balance
34 bimetallic Au-Cu
35 bimetallic Au-Cu/CeO2 catalyst
36 bimetallic catalysts
37 carbon monoxide
38 catalyst
39 catalytic flow system
40 catalytic properties
41 cells
42 complex salts
43 composition
44 decomposition
45 deep purification
46 double complex salts
47 experiments
48 fine organic synthesis
49 flow system
50 fuel cells
51 gas
52 gas mixture
53 high selectivity
54 hourly space velocity
55 hydrogen
56 hydrogen-containing gas
57 hydrogen-containing gas mixtures
58 hydrogenation
59 large amount
60 low-temperature proton-exchange membrane fuel cells
61 membrane fuel cells
62 method
63 method of preparation
64 mixture
65 monometallic Au/CeO2
66 monometallic catalysts
67 monoxide
68 nanoparticles
69 order
70 organic synthesis
71 oxidation
72 particles
73 portable power unit
74 power unit
75 preferential oxidation
76 preparation
77 presence
78 presence of hydrogen
79 promising method
80 properties
81 proton-exchange membrane fuel cells
82 purification
83 range
84 salt
85 selectivity
86 solid solution nanoparticles
87 solution nanoparticles
88 space velocity
89 stoichiometry
90 structure
91 support
92 surface
93 synthesis
94 synthesis of ammonia
95 system
96 temperature range
97 units
98 velocity
99 vol
100 weight hourly space velocity
101 schema:name Bimetallic Au-Cu/CeO2 catalyst: Synthesis, structure, and catalytic properties in the CO preferential oxidation
102 schema:pagination 36-43
103 schema:productId N2208c1bf2a054e02925e2d9b12e700c5
104 N98c51b8394db428ab298b2dc6553a531
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044570567
106 https://doi.org/10.1134/s2070050414010073
107 schema:sdDatePublished 2022-01-01T18:33
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N5b049c0dadde48d5a7da2083af2a8d4f
110 schema:url https://doi.org/10.1134/s2070050414010073
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N053ae5465595474b89c472f63f72120b schema:issueNumber 1
115 rdf:type schema:PublicationIssue
116 N093b0e8222e8403ca5a9943b02ecc807 rdf:first sg:person.012641166115.54
117 rdf:rest N202e6675ff8f40d9815cf504c3d75f63
118 N1a97f39fc8ae4947b46eafbf8fbfb6f2 rdf:first sg:person.016234735001.03
119 rdf:rest N5a53df217243476096f5f0785faa41f4
120 N202e6675ff8f40d9815cf504c3d75f63 rdf:first sg:person.011055206076.39
121 rdf:rest rdf:nil
122 N2208c1bf2a054e02925e2d9b12e700c5 schema:name doi
123 schema:value 10.1134/s2070050414010073
124 rdf:type schema:PropertyValue
125 N5a53df217243476096f5f0785faa41f4 rdf:first sg:person.015444762066.91
126 rdf:rest Nf9026b24c2034930b10cdbf809366b01
127 N5b049c0dadde48d5a7da2083af2a8d4f schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 N98c51b8394db428ab298b2dc6553a531 schema:name dimensions_id
130 schema:value pub.1044570567
131 rdf:type schema:PropertyValue
132 Nb9c45737bfdd46199d7a034d9d091779 schema:volumeNumber 6
133 rdf:type schema:PublicationVolume
134 Nc1ddb1c3ea9344a98c20c566dbb59e39 rdf:first sg:person.0643531001.56
135 rdf:rest N093b0e8222e8403ca5a9943b02ecc807
136 Nf9026b24c2034930b10cdbf809366b01 rdf:first sg:person.013173562064.60
137 rdf:rest Nc1ddb1c3ea9344a98c20c566dbb59e39
138 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
139 schema:name Chemical Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
142 schema:name Inorganic Chemistry
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
145 schema:name Macromolecular and Materials Chemistry
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
148 schema:name Physical Chemistry (incl. Structural)
149 rdf:type schema:DefinedTerm
150 sg:journal.1048926 schema:issn 2070-0504
151 2070-0555
152 schema:name Catalysis in Industry
153 schema:publisher Pleiades Publishing
154 rdf:type schema:Periodical
155 sg:person.011055206076.39 schema:affiliation grid-institutes:grid.4605.7
156 schema:familyName Sobyanin
157 schema:givenName V. A.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011055206076.39
159 rdf:type schema:Person
160 sg:person.012641166115.54 schema:affiliation grid-institutes:grid.415877.8
161 schema:familyName Shubin
162 schema:givenName Yu. V.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012641166115.54
164 rdf:type schema:Person
165 sg:person.013173562064.60 schema:affiliation grid-institutes:grid.415877.8
166 schema:familyName Semitut
167 schema:givenName E. Yu.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173562064.60
169 rdf:type schema:Person
170 sg:person.015444762066.91 schema:affiliation grid-institutes:grid.415877.8
171 schema:familyName Snytnikov
172 schema:givenName P. V.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015444762066.91
174 rdf:type schema:Person
175 sg:person.016234735001.03 schema:affiliation grid-institutes:grid.4605.7
176 schema:familyName Potemkin
177 schema:givenName D. I.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016234735001.03
179 rdf:type schema:Person
180 sg:person.0643531001.56 schema:affiliation grid-institutes:grid.415877.8
181 schema:familyName Plyusnin
182 schema:givenName P. E.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643531001.56
184 rdf:type schema:Person
185 sg:pub.10.1134/s002247661105012x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030730599
186 https://doi.org/10.1134/s002247661105012x
187 rdf:type schema:CreativeWork
188 sg:pub.10.1134/s0023158407020127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040399394
189 https://doi.org/10.1134/s0023158407020127
190 rdf:type schema:CreativeWork
191 sg:pub.10.1134/s0023158410010192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048906039
192 https://doi.org/10.1134/s0023158410010192
193 rdf:type schema:CreativeWork
194 grid-institutes:grid.415877.8 schema:alternateName Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
195 schema:name Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
196 Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
197 Novosibirsk State University, 630090, Novosibirsk, Russia
198 rdf:type schema:Organization
199 grid-institutes:grid.4605.7 schema:alternateName Novosibirsk State University, 630090, Novosibirsk, Russia
200 schema:name Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
201 Novosibirsk State University, 630090, Novosibirsk, Russia
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...