Ontology type: schema:ScholarlyArticle
2010-03
AUTHORS ABSTRACTMethods for the preparation of nanosized alloys from noble metals by decomposition of monomolecular precursors are described, and the results of these studies are reported. Other aspects of the synthesis procedure and properties of bimetallic nanostructures are also considered. Thermolysis of noble metal compounds led to the formation of an ultradisperse powder of their alloys. This method affords catalysts with a uniform distribution of active particles. Nanosized particles of a number of alloys in hydrogen and inert media were prepared. The optimum parameters of the reduction of complex compounds (gas medium, thermolysis temperature, heating rate, and annealing time) were determined to obtain ultradisperse powders with the required particle size, phase composition, and structure. For Co-Pt and Pt-Pd systems, bimetallic catalysts deposited on γ-Al2O3 and Sibunit can be obtained; these catalysts show higher activity in selective oxidation of CO compared with monometallic catalysts. More... »
PAGES20-25
http://scigraph.springernature.com/pub.10.1134/s2070050410010034
DOIhttp://dx.doi.org/10.1134/s2070050410010034
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020875063
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia",
"id": "http://www.grid.ac/institutes/grid.425759.8",
"name": [
"Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia"
],
"type": "Organization"
},
"familyName": "Shubin",
"givenName": "Yu. V.",
"id": "sg:person.012641166115.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012641166115.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia",
"id": "http://www.grid.ac/institutes/grid.425759.8",
"name": [
"Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia"
],
"type": "Organization"
},
"familyName": "Korenev",
"givenName": "S. V.",
"id": "sg:person.0713211235.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713211235.58"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1134/s0023158407020127",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040399394",
"https://doi.org/10.1134/s0023158407020127"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1022840016102",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010499576",
"https://doi.org/10.1023/a:1022840016102"
],
"type": "CreativeWork"
}
],
"datePublished": "2010-03",
"datePublishedReg": "2010-03-01",
"description": "Methods for the preparation of nanosized alloys from noble metals by decomposition of monomolecular precursors are described, and the results of these studies are reported. Other aspects of the synthesis procedure and properties of bimetallic nanostructures are also considered. Thermolysis of noble metal compounds led to the formation of an ultradisperse powder of their alloys. This method affords catalysts with a uniform distribution of active particles. Nanosized particles of a number of alloys in hydrogen and inert media were prepared. The optimum parameters of the reduction of complex compounds (gas medium, thermolysis temperature, heating rate, and annealing time) were determined to obtain ultradisperse powders with the required particle size, phase composition, and structure. For Co-Pt and Pt-Pd systems, bimetallic catalysts deposited on \u03b3-Al2O3 and Sibunit can be obtained; these catalysts show higher activity in selective oxidation of CO compared with monometallic catalysts.",
"genre": "article",
"id": "sg:pub.10.1134/s2070050410010034",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1048926",
"issn": [
"2070-0504",
"2070-0555"
],
"name": "Catalysis in Industry",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2"
}
],
"keywords": [
"noble metals",
"noble metal compounds",
"ultradisperse powders",
"monometallic catalysts",
"bimetallic catalysts",
"selective oxidation",
"bimetallic particles",
"bimetallic nanostructures",
"metal compounds",
"complex compounds",
"number of alloys",
"catalyst",
"synthesis procedure",
"high activity",
"particle size",
"phase composition",
"optimum parameters",
"active particles",
"alloy",
"inert medium",
"compounds",
"metals",
"uniform distribution",
"powder",
"Sibunit",
"particles",
"thermolysis",
"nanostructures",
"oxidation",
"formation",
"hydrogen",
"CO",
"Al2O3",
"preparation",
"precursors",
"properties",
"decomposition",
"structure",
"composition",
"method",
"parameters",
"medium",
"system",
"size",
"activity",
"distribution",
"reduction",
"results",
"procedure",
"study",
"number",
"aspects"
],
"name": "Formation of nanosized bimetallic particles based on noble metals",
"pagination": "20-25",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020875063"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s2070050410010034"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s2070050410010034",
"https://app.dimensions.ai/details/publication/pub.1020875063"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:01",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_516.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s2070050410010034"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s2070050410010034'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s2070050410010034'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s2070050410010034'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s2070050410010034'
This table displays all metadata directly associated to this object as RDF triples.
137 TRIPLES
22 PREDICATES
83 URIs
70 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s2070050410010034 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | ″ | anzsrc-for:0399 |
4 | ″ | ″ | anzsrc-for:09 |
5 | ″ | ″ | anzsrc-for:0912 |
6 | ″ | schema:author | N04013a7b3e9a4416988452f2686d86ce |
7 | ″ | schema:citation | sg:pub.10.1023/a:1022840016102 |
8 | ″ | ″ | sg:pub.10.1134/s0023158407020127 |
9 | ″ | schema:datePublished | 2010-03 |
10 | ″ | schema:datePublishedReg | 2010-03-01 |
11 | ″ | schema:description | Methods for the preparation of nanosized alloys from noble metals by decomposition of monomolecular precursors are described, and the results of these studies are reported. Other aspects of the synthesis procedure and properties of bimetallic nanostructures are also considered. Thermolysis of noble metal compounds led to the formation of an ultradisperse powder of their alloys. This method affords catalysts with a uniform distribution of active particles. Nanosized particles of a number of alloys in hydrogen and inert media were prepared. The optimum parameters of the reduction of complex compounds (gas medium, thermolysis temperature, heating rate, and annealing time) were determined to obtain ultradisperse powders with the required particle size, phase composition, and structure. For Co-Pt and Pt-Pd systems, bimetallic catalysts deposited on γ-Al2O3 and Sibunit can be obtained; these catalysts show higher activity in selective oxidation of CO compared with monometallic catalysts. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N9d06b03dd46749768e5ab03b90ed8fa6 |
16 | ″ | ″ | Nd0d337a37f184762816b4a92aa4c3515 |
17 | ″ | ″ | sg:journal.1048926 |
18 | ″ | schema:keywords | Al2O3 |
19 | ″ | ″ | CO |
20 | ″ | ″ | Sibunit |
21 | ″ | ″ | active particles |
22 | ″ | ″ | activity |
23 | ″ | ″ | alloy |
24 | ″ | ″ | aspects |
25 | ″ | ″ | bimetallic catalysts |
26 | ″ | ″ | bimetallic nanostructures |
27 | ″ | ″ | bimetallic particles |
28 | ″ | ″ | catalyst |
29 | ″ | ″ | complex compounds |
30 | ″ | ″ | composition |
31 | ″ | ″ | compounds |
32 | ″ | ″ | decomposition |
33 | ″ | ″ | distribution |
34 | ″ | ″ | formation |
35 | ″ | ″ | high activity |
36 | ″ | ″ | hydrogen |
37 | ″ | ″ | inert medium |
38 | ″ | ″ | medium |
39 | ″ | ″ | metal compounds |
40 | ″ | ″ | metals |
41 | ″ | ″ | method |
42 | ″ | ″ | monometallic catalysts |
43 | ″ | ″ | nanostructures |
44 | ″ | ″ | noble metal compounds |
45 | ″ | ″ | noble metals |
46 | ″ | ″ | number |
47 | ″ | ″ | number of alloys |
48 | ″ | ″ | optimum parameters |
49 | ″ | ″ | oxidation |
50 | ″ | ″ | parameters |
51 | ″ | ″ | particle size |
52 | ″ | ″ | particles |
53 | ″ | ″ | phase composition |
54 | ″ | ″ | powder |
55 | ″ | ″ | precursors |
56 | ″ | ″ | preparation |
57 | ″ | ″ | procedure |
58 | ″ | ″ | properties |
59 | ″ | ″ | reduction |
60 | ″ | ″ | results |
61 | ″ | ″ | selective oxidation |
62 | ″ | ″ | size |
63 | ″ | ″ | structure |
64 | ″ | ″ | study |
65 | ″ | ″ | synthesis procedure |
66 | ″ | ″ | system |
67 | ″ | ″ | thermolysis |
68 | ″ | ″ | ultradisperse powders |
69 | ″ | ″ | uniform distribution |
70 | ″ | schema:name | Formation of nanosized bimetallic particles based on noble metals |
71 | ″ | schema:pagination | 20-25 |
72 | ″ | schema:productId | Nc15c33e3ccc9444397ee3812f1da55df |
73 | ″ | ″ | Nde35e3996cee412b97578beb1eeeef42 |
74 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020875063 |
75 | ″ | ″ | https://doi.org/10.1134/s2070050410010034 |
76 | ″ | schema:sdDatePublished | 2022-05-10T10:01 |
77 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
78 | ″ | schema:sdPublisher | Ncb0c9d25fc174de79cd8c16a032fb4f6 |
79 | ″ | schema:url | https://doi.org/10.1134/s2070050410010034 |
80 | ″ | sgo:license | sg:explorer/license/ |
81 | ″ | sgo:sdDataset | articles |
82 | ″ | rdf:type | schema:ScholarlyArticle |
83 | N04013a7b3e9a4416988452f2686d86ce | rdf:first | sg:person.012641166115.54 |
84 | ″ | rdf:rest | Nffc52350040249f6966014e860c573c6 |
85 | N9d06b03dd46749768e5ab03b90ed8fa6 | schema:volumeNumber | 2 |
86 | ″ | rdf:type | schema:PublicationVolume |
87 | Nc15c33e3ccc9444397ee3812f1da55df | schema:name | doi |
88 | ″ | schema:value | 10.1134/s2070050410010034 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | Ncb0c9d25fc174de79cd8c16a032fb4f6 | schema:name | Springer Nature - SN SciGraph project |
91 | ″ | rdf:type | schema:Organization |
92 | Nd0d337a37f184762816b4a92aa4c3515 | schema:issueNumber | 1 |
93 | ″ | rdf:type | schema:PublicationIssue |
94 | Nde35e3996cee412b97578beb1eeeef42 | schema:name | dimensions_id |
95 | ″ | schema:value | pub.1020875063 |
96 | ″ | rdf:type | schema:PropertyValue |
97 | Nffc52350040249f6966014e860c573c6 | rdf:first | sg:person.0713211235.58 |
98 | ″ | rdf:rest | rdf:nil |
99 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Chemical Sciences |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Physical Chemistry (incl. Structural) |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:0399 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Other Chemical Sciences |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Engineering |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Materials Engineering |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | sg:journal.1048926 | schema:issn | 2070-0504 |
115 | ″ | ″ | 2070-0555 |
116 | ″ | schema:name | Catalysis in Industry |
117 | ″ | schema:publisher | Pleiades Publishing |
118 | ″ | rdf:type | schema:Periodical |
119 | sg:person.012641166115.54 | schema:affiliation | grid-institutes:grid.425759.8 |
120 | ″ | schema:familyName | Shubin |
121 | ″ | schema:givenName | Yu. V. |
122 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012641166115.54 |
123 | ″ | rdf:type | schema:Person |
124 | sg:person.0713211235.58 | schema:affiliation | grid-institutes:grid.425759.8 |
125 | ″ | schema:familyName | Korenev |
126 | ″ | schema:givenName | S. V. |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713211235.58 |
128 | ″ | rdf:type | schema:Person |
129 | sg:pub.10.1023/a:1022840016102 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010499576 |
130 | ″ | ″ | https://doi.org/10.1023/a:1022840016102 |
131 | ″ | rdf:type | schema:CreativeWork |
132 | sg:pub.10.1134/s0023158407020127 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040399394 |
133 | ″ | ″ | https://doi.org/10.1134/s0023158407020127 |
134 | ″ | rdf:type | schema:CreativeWork |
135 | grid-institutes:grid.425759.8 | schema:alternateName | Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia |
136 | ″ | schema:name | Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia |
137 | ″ | rdf:type | schema:Organization |