Efficiency of classical molecular dynamics algorithms on supercomputers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-11

AUTHORS

G. S. Smirnov, V. V. Stegailov

ABSTRACT

High performance computing hardware is developed faster than the algorithms for fundamental mathematical models such as classical molecular dynamics are adapted. A wide variety of choice makes it necessary to determine clear criteria based on the computational efficiency of a specific algorithm on a particular hardware. The LINPACK benchmark can no longer serve this purpose. In this paper, we analyze the solution time–peak performance metric based on practical considerations. In this metric, we compare different hardware (both current and obsolete) based on the example of the LAMMPS benchmark, which is widely used for atomistic simulations. It is shown that the considered metric can be used for unambiguous comparison of different combinations of CPUs, accelerators, and interconnection. More... »

PAGES

734-743

References to SciGraph publications

  • 2015-09. Molecular dynamic simulation of thermodynamic equilibrium establishment in nickel in MATHEMATICAL MODELS AND COMPUTER SIMULATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s2070048216060156

    DOI

    http://dx.doi.org/10.1134/s2070048216060156

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020406720


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow Institute of Physics and Technology", 
              "id": "https://www.grid.ac/institutes/grid.18763.3b", 
              "name": [
                "Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia", 
                "Moscow Institute of Physics and Technology, 117303, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smirnov", 
            "givenName": "G. S.", 
            "id": "sg:person.01176201755.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176201755.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow Institute of Physics and Technology", 
              "id": "https://www.grid.ac/institutes/grid.18763.3b", 
              "name": [
                "Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia", 
                "Moscow Institute of Physics and Technology, 117303, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stegailov", 
            "givenName": "V. V.", 
            "id": "sg:person.013675326625.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013675326625.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.cpc.2013.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006814677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s2070048215050105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008725907", 
              "https://doi.org/10.1134/s2070048215050105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2015.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029073500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpdc.2014.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032552099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpdc.2014.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032552099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpdc.2014.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032552099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpdc.2014.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032552099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpdc.2014.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032552099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jcph.1995.1039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034822855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2010.12.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045660018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.2013.0387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045842136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2010.12.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048709185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2011.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049972720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ipdps.2013.83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093269047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sc.2014.9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093875572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ipdps.2013.44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094888106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sc.2012.87", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095544820"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-11", 
        "datePublishedReg": "2016-11-01", 
        "description": "High performance computing hardware is developed faster than the algorithms for fundamental mathematical models such as classical molecular dynamics are adapted. A wide variety of choice makes it necessary to determine clear criteria based on the computational efficiency of a specific algorithm on a particular hardware. The LINPACK benchmark can no longer serve this purpose. In this paper, we analyze the solution time\u2013peak performance metric based on practical considerations. In this metric, we compare different hardware (both current and obsolete) based on the example of the LAMMPS benchmark, which is widely used for atomistic simulations. It is shown that the considered metric can be used for unambiguous comparison of different combinations of CPUs, accelerators, and interconnection.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s2070048216060156", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136488", 
            "issn": [
              "2070-0482", 
              "2070-0490"
            ], 
            "name": "Mathematical Models and Computer Simulations", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Efficiency of classical molecular dynamics algorithms on supercomputers", 
        "pagination": "734-743", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "613b838e02d6215f2c4659b863ee5cc414b61b263ad719276d0c4fc4aa866f3b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s2070048216060156"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020406720"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s2070048216060156", 
          "https://app.dimensions.ai/details/publication/pub.1020406720"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88257_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1134%2FS2070048216060156"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s2070048216060156'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s2070048216060156'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s2070048216060156'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s2070048216060156'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s2070048216060156 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N5c26984571c9406d9dd8e0aa57899b3f
    4 schema:citation sg:pub.10.1134/s2070048215050105
    5 https://doi.org/10.1006/jcph.1995.1039
    6 https://doi.org/10.1016/j.cpc.2010.12.021
    7 https://doi.org/10.1016/j.cpc.2010.12.026
    8 https://doi.org/10.1016/j.cpc.2011.10.012
    9 https://doi.org/10.1016/j.cpc.2013.08.002
    10 https://doi.org/10.1016/j.cpc.2015.01.009
    11 https://doi.org/10.1016/j.jpdc.2014.07.003
    12 https://doi.org/10.1098/rsta.2013.0387
    13 https://doi.org/10.1109/ipdps.2013.44
    14 https://doi.org/10.1109/ipdps.2013.83
    15 https://doi.org/10.1109/sc.2012.87
    16 https://doi.org/10.1109/sc.2014.9
    17 schema:datePublished 2016-11
    18 schema:datePublishedReg 2016-11-01
    19 schema:description High performance computing hardware is developed faster than the algorithms for fundamental mathematical models such as classical molecular dynamics are adapted. A wide variety of choice makes it necessary to determine clear criteria based on the computational efficiency of a specific algorithm on a particular hardware. The LINPACK benchmark can no longer serve this purpose. In this paper, we analyze the solution time–peak performance metric based on practical considerations. In this metric, we compare different hardware (both current and obsolete) based on the example of the LAMMPS benchmark, which is widely used for atomistic simulations. It is shown that the considered metric can be used for unambiguous comparison of different combinations of CPUs, accelerators, and interconnection.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N09dc119ae1064398a3176e8947645919
    24 Ne2410b215fc548e3a8aa915e80bfb21d
    25 sg:journal.1136488
    26 schema:name Efficiency of classical molecular dynamics algorithms on supercomputers
    27 schema:pagination 734-743
    28 schema:productId N0c7ff7286a9b46959f6f50378b7c8774
    29 N60cd4fd153c140eeb190fea44310262c
    30 Neb2da0b6a9284efc8ab99526273e3a15
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020406720
    32 https://doi.org/10.1134/s2070048216060156
    33 schema:sdDatePublished 2019-04-11T13:12
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N78c10b08dd1741bbad6912e0ac1edab0
    36 schema:url https://link.springer.com/10.1134%2FS2070048216060156
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N09dc119ae1064398a3176e8947645919 schema:volumeNumber 8
    41 rdf:type schema:PublicationVolume
    42 N0c7ff7286a9b46959f6f50378b7c8774 schema:name dimensions_id
    43 schema:value pub.1020406720
    44 rdf:type schema:PropertyValue
    45 N5c26984571c9406d9dd8e0aa57899b3f rdf:first sg:person.01176201755.87
    46 rdf:rest N84901cefd6384863a5a37acfe6dc9645
    47 N60cd4fd153c140eeb190fea44310262c schema:name doi
    48 schema:value 10.1134/s2070048216060156
    49 rdf:type schema:PropertyValue
    50 N78c10b08dd1741bbad6912e0ac1edab0 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N84901cefd6384863a5a37acfe6dc9645 rdf:first sg:person.013675326625.36
    53 rdf:rest rdf:nil
    54 Ne2410b215fc548e3a8aa915e80bfb21d schema:issueNumber 6
    55 rdf:type schema:PublicationIssue
    56 Neb2da0b6a9284efc8ab99526273e3a15 schema:name readcube_id
    57 schema:value 613b838e02d6215f2c4659b863ee5cc414b61b263ad719276d0c4fc4aa866f3b
    58 rdf:type schema:PropertyValue
    59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Mathematical Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Applied Mathematics
    64 rdf:type schema:DefinedTerm
    65 sg:journal.1136488 schema:issn 2070-0482
    66 2070-0490
    67 schema:name Mathematical Models and Computer Simulations
    68 rdf:type schema:Periodical
    69 sg:person.01176201755.87 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
    70 schema:familyName Smirnov
    71 schema:givenName G. S.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176201755.87
    73 rdf:type schema:Person
    74 sg:person.013675326625.36 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
    75 schema:familyName Stegailov
    76 schema:givenName V. V.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013675326625.36
    78 rdf:type schema:Person
    79 sg:pub.10.1134/s2070048215050105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008725907
    80 https://doi.org/10.1134/s2070048215050105
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1006/jcph.1995.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034822855
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/j.cpc.2010.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048709185
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1016/j.cpc.2010.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045660018
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1016/j.cpc.2011.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049972720
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/j.cpc.2013.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006814677
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1016/j.cpc.2015.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029073500
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/j.jpdc.2014.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032552099
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1098/rsta.2013.0387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045842136
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1109/ipdps.2013.44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094888106
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1109/ipdps.2013.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093269047
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1109/sc.2012.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095544820
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1109/sc.2014.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093875572
    105 rdf:type schema:CreativeWork
    106 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
    107 schema:name Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia
    108 Moscow Institute of Physics and Technology, 117303, Moscow, Russia
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...