The p-adic analytic subgroup theorem revisited View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-04

AUTHORS

C. Fuchs, D. H. Pham

ABSTRACT

It is well-known that the Wüstholz’ analytic subgroup theorem is one of the most powerful theorems in transcendence theory. The theorem gives in a very systematic and conceptual way the transcendence of a large class of complex numbers, e.g. the transcendence of π which is originally due to Lindemann. In this paper we revisit the p-adic analogue of the analytic subgroup theorem and present a proof based on the method described and developed by the authors in a recent related paper. More... »

PAGES

143-156

References to SciGraph publications

  • 1983-02. On Siegel's lemma in INVENTIONES MATHEMATICAE
  • 1996-09. p-Adic abelian integrals and commutative lie groups in JOURNAL OF MATHEMATICAL SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s2070046615020065

    DOI

    http://dx.doi.org/10.1134/s2070046615020065

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008613160


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria", 
              "id": "http://www.grid.ac/institutes/grid.7039.d", 
              "name": [
                "Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fuchs", 
            "givenName": "C.", 
            "id": "sg:person.011534256073.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam", 
              "id": "http://www.grid.ac/institutes/grid.440774.4", 
              "name": [
                "Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pham", 
            "givenName": "D. H.", 
            "id": "sg:person.012261410746.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261410746.73"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02362339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030683315", 
              "https://doi.org/10.1007/bf02362339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01393823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046421426", 
              "https://doi.org/10.1007/bf01393823"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-04", 
        "datePublishedReg": "2015-04-01", 
        "description": "It is well-known that the W\u00fcstholz\u2019 analytic subgroup theorem is one of the most powerful theorems in transcendence theory. The theorem gives in a very systematic and conceptual way the transcendence of a large class of complex numbers, e.g. the transcendence of \u03c0 which is originally due to Lindemann. In this paper we revisit the p-adic analogue of the analytic subgroup theorem and present a proof based on the method described and developed by the authors in a recent related paper.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s2070046615020065", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6206592", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1135887", 
            "issn": [
              "2070-0466", 
              "2070-0474"
            ], 
            "name": "p-Adic Numbers, Ultrametric Analysis and Applications", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "subgroup theorem", 
          "transcendence theory", 
          "recent related papers", 
          "powerful theorem", 
          "complex numbers", 
          "theorem", 
          "large class", 
          "adic analogue", 
          "W\u00fcstholz", 
          "related papers", 
          "theory", 
          "conceptual way", 
          "proof", 
          "class", 
          "Lindemann", 
          "number", 
          "way", 
          "analogues", 
          "authors", 
          "transcendence", 
          "paper", 
          "method"
        ], 
        "name": "The p-adic analytic subgroup theorem revisited", 
        "pagination": "143-156", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008613160"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s2070046615020065"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s2070046615020065", 
          "https://app.dimensions.ai/details/publication/pub.1008613160"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_666.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s2070046615020065"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s2070046615020065'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s2070046615020065'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s2070046615020065'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s2070046615020065'


     

    This table displays all metadata directly associated to this object as RDF triples.

    100 TRIPLES      22 PREDICATES      50 URIs      40 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s2070046615020065 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nbf59a16320bf4b64b0ebc2a0e13fd11e
    4 schema:citation sg:pub.10.1007/bf01393823
    5 sg:pub.10.1007/bf02362339
    6 schema:datePublished 2015-04
    7 schema:datePublishedReg 2015-04-01
    8 schema:description It is well-known that the Wüstholz’ analytic subgroup theorem is one of the most powerful theorems in transcendence theory. The theorem gives in a very systematic and conceptual way the transcendence of a large class of complex numbers, e.g. the transcendence of π which is originally due to Lindemann. In this paper we revisit the p-adic analogue of the analytic subgroup theorem and present a proof based on the method described and developed by the authors in a recent related paper.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N620a8b5b06c24858ae792d2805271bbe
    13 N8b5cb113ff864bfba4ba1fceeea727b3
    14 sg:journal.1135887
    15 schema:keywords Lindemann
    16 Wüstholz
    17 adic analogue
    18 analogues
    19 authors
    20 class
    21 complex numbers
    22 conceptual way
    23 large class
    24 method
    25 number
    26 paper
    27 powerful theorem
    28 proof
    29 recent related papers
    30 related papers
    31 subgroup theorem
    32 theorem
    33 theory
    34 transcendence
    35 transcendence theory
    36 way
    37 schema:name The p-adic analytic subgroup theorem revisited
    38 schema:pagination 143-156
    39 schema:productId Nc4e346f840aa411d95b8a5f6ec01c03e
    40 Nde8db80467c64ec3abcdd3ec00bd0b15
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008613160
    42 https://doi.org/10.1134/s2070046615020065
    43 schema:sdDatePublished 2022-05-10T10:13
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N942ff8c4565a4434ae97ab064dd95a63
    46 schema:url https://doi.org/10.1134/s2070046615020065
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N620a8b5b06c24858ae792d2805271bbe schema:issueNumber 2
    51 rdf:type schema:PublicationIssue
    52 N6b95612f664142b1a9affbc94a3bc9e5 rdf:first sg:person.012261410746.73
    53 rdf:rest rdf:nil
    54 N8b5cb113ff864bfba4ba1fceeea727b3 schema:volumeNumber 7
    55 rdf:type schema:PublicationVolume
    56 N942ff8c4565a4434ae97ab064dd95a63 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 Nbf59a16320bf4b64b0ebc2a0e13fd11e rdf:first sg:person.011534256073.49
    59 rdf:rest N6b95612f664142b1a9affbc94a3bc9e5
    60 Nc4e346f840aa411d95b8a5f6ec01c03e schema:name doi
    61 schema:value 10.1134/s2070046615020065
    62 rdf:type schema:PropertyValue
    63 Nde8db80467c64ec3abcdd3ec00bd0b15 schema:name dimensions_id
    64 schema:value pub.1008613160
    65 rdf:type schema:PropertyValue
    66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Mathematical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Pure Mathematics
    71 rdf:type schema:DefinedTerm
    72 sg:grant.6206592 http://pending.schema.org/fundedItem sg:pub.10.1134/s2070046615020065
    73 rdf:type schema:MonetaryGrant
    74 sg:journal.1135887 schema:issn 2070-0466
    75 2070-0474
    76 schema:name p-Adic Numbers, Ultrametric Analysis and Applications
    77 schema:publisher Pleiades Publishing
    78 rdf:type schema:Periodical
    79 sg:person.011534256073.49 schema:affiliation grid-institutes:grid.7039.d
    80 schema:familyName Fuchs
    81 schema:givenName C.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49
    83 rdf:type schema:Person
    84 sg:person.012261410746.73 schema:affiliation grid-institutes:grid.440774.4
    85 schema:familyName Pham
    86 schema:givenName D. H.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261410746.73
    88 rdf:type schema:Person
    89 sg:pub.10.1007/bf01393823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046421426
    90 https://doi.org/10.1007/bf01393823
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf02362339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030683315
    93 https://doi.org/10.1007/bf02362339
    94 rdf:type schema:CreativeWork
    95 grid-institutes:grid.440774.4 schema:alternateName Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
    96 schema:name Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
    97 rdf:type schema:Organization
    98 grid-institutes:grid.7039.d schema:alternateName Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
    99 schema:name Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
    100 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...