The p-adic analytic subgroup theorem revisited View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-04

AUTHORS

C. Fuchs, D. H. Pham

ABSTRACT

It is well-known that the Wüstholz’ analytic subgroup theorem is one of the most powerful theorems in transcendence theory. The theorem gives in a very systematic and conceptual way the transcendence of a large class of complex numbers, e.g. the transcendence of π which is originally due to Lindemann. In this paper we revisit the p-adic analogue of the analytic subgroup theorem and present a proof based on the method described and developed by the authors in a recent related paper. More... »

PAGES

143-156

References to SciGraph publications

  • 1983-02. On Siegel's lemma in INVENTIONES MATHEMATICAE
  • 1996-09. p-Adic abelian integrals and commutative lie groups in JOURNAL OF MATHEMATICAL SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s2070046615020065

    DOI

    http://dx.doi.org/10.1134/s2070046615020065

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008613160


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria", 
              "id": "http://www.grid.ac/institutes/grid.7039.d", 
              "name": [
                "Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fuchs", 
            "givenName": "C.", 
            "id": "sg:person.011534256073.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam", 
              "id": "http://www.grid.ac/institutes/grid.440774.4", 
              "name": [
                "Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pham", 
            "givenName": "D. H.", 
            "id": "sg:person.012261410746.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261410746.73"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02362339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030683315", 
              "https://doi.org/10.1007/bf02362339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01393823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046421426", 
              "https://doi.org/10.1007/bf01393823"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-04", 
        "datePublishedReg": "2015-04-01", 
        "description": "It is well-known that the W\u00fcstholz\u2019 analytic subgroup theorem is one of the most powerful theorems in transcendence theory. The theorem gives in a very systematic and conceptual way the transcendence of a large class of complex numbers, e.g. the transcendence of \u03c0 which is originally due to Lindemann. In this paper we revisit the p-adic analogue of the analytic subgroup theorem and present a proof based on the method described and developed by the authors in a recent related paper.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s2070046615020065", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6206592", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1135887", 
            "issn": [
              "2070-0466", 
              "2070-0474"
            ], 
            "name": "p-Adic Numbers, Ultrametric Analysis and Applications", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "subgroup theorem", 
          "transcendence theory", 
          "powerful theorem", 
          "complex numbers", 
          "adic analogue", 
          "theorem", 
          "large class", 
          "W\u00fcstholz", 
          "related papers", 
          "theory", 
          "conceptual way", 
          "class", 
          "proof", 
          "number", 
          "way", 
          "analogues", 
          "authors", 
          "transcendence", 
          "Lindemann", 
          "paper", 
          "method", 
          "analytic subgroup theorem", 
          "recent related paper", 
          "adic analytic subgroup theorem"
        ], 
        "name": "The p-adic analytic subgroup theorem revisited", 
        "pagination": "143-156", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008613160"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s2070046615020065"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s2070046615020065", 
          "https://app.dimensions.ai/details/publication/pub.1008613160"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_661.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s2070046615020065"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s2070046615020065'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s2070046615020065'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s2070046615020065'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s2070046615020065'


     

    This table displays all metadata directly associated to this object as RDF triples.

    102 TRIPLES      22 PREDICATES      52 URIs      42 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s2070046615020065 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N2d72e8c09bd949efb9cb630ad4101333
    4 schema:citation sg:pub.10.1007/bf01393823
    5 sg:pub.10.1007/bf02362339
    6 schema:datePublished 2015-04
    7 schema:datePublishedReg 2015-04-01
    8 schema:description It is well-known that the Wüstholz’ analytic subgroup theorem is one of the most powerful theorems in transcendence theory. The theorem gives in a very systematic and conceptual way the transcendence of a large class of complex numbers, e.g. the transcendence of π which is originally due to Lindemann. In this paper we revisit the p-adic analogue of the analytic subgroup theorem and present a proof based on the method described and developed by the authors in a recent related paper.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N11edc84d7ee6481383c3670422128127
    13 N39d2bfc59b194cedaece9a5139e433d4
    14 sg:journal.1135887
    15 schema:keywords Lindemann
    16 Wüstholz
    17 adic analogue
    18 adic analytic subgroup theorem
    19 analogues
    20 analytic subgroup theorem
    21 authors
    22 class
    23 complex numbers
    24 conceptual way
    25 large class
    26 method
    27 number
    28 paper
    29 powerful theorem
    30 proof
    31 recent related paper
    32 related papers
    33 subgroup theorem
    34 theorem
    35 theory
    36 transcendence
    37 transcendence theory
    38 way
    39 schema:name The p-adic analytic subgroup theorem revisited
    40 schema:pagination 143-156
    41 schema:productId N4a6017dec58041bc940c8a594b6e786c
    42 Nc300c5411cb84303a12f05bff49732fa
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008613160
    44 https://doi.org/10.1134/s2070046615020065
    45 schema:sdDatePublished 2022-01-01T18:36
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N7bf6bda1194d411b908b4af1e0cb3409
    48 schema:url https://doi.org/10.1134/s2070046615020065
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N11edc84d7ee6481383c3670422128127 schema:issueNumber 2
    53 rdf:type schema:PublicationIssue
    54 N2d72e8c09bd949efb9cb630ad4101333 rdf:first sg:person.011534256073.49
    55 rdf:rest Na0a1e720719641cabe1a701cd96338b3
    56 N39d2bfc59b194cedaece9a5139e433d4 schema:volumeNumber 7
    57 rdf:type schema:PublicationVolume
    58 N4a6017dec58041bc940c8a594b6e786c schema:name doi
    59 schema:value 10.1134/s2070046615020065
    60 rdf:type schema:PropertyValue
    61 N7bf6bda1194d411b908b4af1e0cb3409 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Na0a1e720719641cabe1a701cd96338b3 rdf:first sg:person.012261410746.73
    64 rdf:rest rdf:nil
    65 Nc300c5411cb84303a12f05bff49732fa schema:name dimensions_id
    66 schema:value pub.1008613160
    67 rdf:type schema:PropertyValue
    68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Mathematical Sciences
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Pure Mathematics
    73 rdf:type schema:DefinedTerm
    74 sg:grant.6206592 http://pending.schema.org/fundedItem sg:pub.10.1134/s2070046615020065
    75 rdf:type schema:MonetaryGrant
    76 sg:journal.1135887 schema:issn 2070-0466
    77 2070-0474
    78 schema:name p-Adic Numbers, Ultrametric Analysis and Applications
    79 schema:publisher Pleiades Publishing
    80 rdf:type schema:Periodical
    81 sg:person.011534256073.49 schema:affiliation grid-institutes:grid.7039.d
    82 schema:familyName Fuchs
    83 schema:givenName C.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49
    85 rdf:type schema:Person
    86 sg:person.012261410746.73 schema:affiliation grid-institutes:grid.440774.4
    87 schema:familyName Pham
    88 schema:givenName D. H.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012261410746.73
    90 rdf:type schema:Person
    91 sg:pub.10.1007/bf01393823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046421426
    92 https://doi.org/10.1007/bf01393823
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/bf02362339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030683315
    95 https://doi.org/10.1007/bf02362339
    96 rdf:type schema:CreativeWork
    97 grid-institutes:grid.440774.4 schema:alternateName Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
    98 schema:name Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
    99 rdf:type schema:Organization
    100 grid-institutes:grid.7039.d schema:alternateName Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
    101 schema:name Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
    102 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...