Analysis of random noise effects on strange attractors by a Monte Carlo method on supercomputers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-04

AUTHORS

S. S. Artemiev, A. A. Ivanov

ABSTRACT

In this paper, we numerically investigate random noise effects on the behavior of trajectories of strange attractors defined by a system of ordinary differential equations. The resulting stochastic differential equations are solved by a generalized Euler method. The results of numerical experiments on a cluster, NCC–30T, at the Siberian Supercomputer Center, ICM&MG, using a program package, PARMONC, are presented. For analysis of the numerical solutions, some frequency characteristics generalizing the integral curve and the phase portrait are used. More... »

PAGES

101-112

References to SciGraph publications

  • 2007-05. Distributed computing by the Monte Carlo method in AUTOMATION AND REMOTE CONTROL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1995423915020020

    DOI

    http://dx.doi.org/10.1134/s1995423915020020

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042006288


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Novosibirsk State University", 
              "id": "https://www.grid.ac/institutes/grid.4605.7", 
              "name": [
                "Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent\u2019eva 6, 630090, Novosibirsk, Russia", 
                "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Artemiev", 
            "givenName": "S. S.", 
            "id": "sg:person.011527055425.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011527055425.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Computational Mathematics and Mathematical Geophysics", 
              "id": "https://www.grid.ac/institutes/grid.465353.2", 
              "name": [
                "Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent\u2019eva 6, 630090, Novosibirsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ivanov", 
            "givenName": "A. A.", 
            "id": "sg:person.01323037704.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323037704.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s0005117907050141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022420303", 
              "https://doi.org/10.1134/s0005117907050141"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-04", 
        "datePublishedReg": "2015-04-01", 
        "description": "In this paper, we numerically investigate random noise effects on the behavior of trajectories of strange attractors defined by a system of ordinary differential equations. The resulting stochastic differential equations are solved by a generalized Euler method. The results of numerical experiments on a cluster, NCC\u201330T, at the Siberian Supercomputer Center, ICM&MG, using a program package, PARMONC, are presented. For analysis of the numerical solutions, some frequency characteristics generalizing the integral curve and the phase portrait are used.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1995423915020020", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136637", 
            "issn": [
              "1995-4239", 
              "1995-4247"
            ], 
            "name": "Numerical Analysis and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Analysis of random noise effects on strange attractors by a Monte Carlo method on supercomputers", 
        "pagination": "101-112", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c8190580848c08978d271017ffa656727859614337f9b7115daaedd0d2f8e644"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1995423915020020"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042006288"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1995423915020020", 
          "https://app.dimensions.ai/details/publication/pub.1042006288"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000537.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134%2FS1995423915020020"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1995423915020020'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1995423915020020'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1995423915020020'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1995423915020020'


     

    This table displays all metadata directly associated to this object as RDF triples.

    76 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1995423915020020 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N75f6156a91c947d18dd01b29c317bd9c
    4 schema:citation sg:pub.10.1134/s0005117907050141
    5 schema:datePublished 2015-04
    6 schema:datePublishedReg 2015-04-01
    7 schema:description In this paper, we numerically investigate random noise effects on the behavior of trajectories of strange attractors defined by a system of ordinary differential equations. The resulting stochastic differential equations are solved by a generalized Euler method. The results of numerical experiments on a cluster, NCC–30T, at the Siberian Supercomputer Center, ICM&MG, using a program package, PARMONC, are presented. For analysis of the numerical solutions, some frequency characteristics generalizing the integral curve and the phase portrait are used.
    8 schema:genre research_article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N7db5c91a42084a31af1f7024f49308ab
    12 Nd1137ba19a754433beb78c80c70d65b9
    13 sg:journal.1136637
    14 schema:name Analysis of random noise effects on strange attractors by a Monte Carlo method on supercomputers
    15 schema:pagination 101-112
    16 schema:productId N044dc570f6f340faa92f28b922ca5aed
    17 N5083d7ac26894c77bc2395a187d1b70b
    18 Naa09ac2b46524c4a8511202caadbba49
    19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042006288
    20 https://doi.org/10.1134/s1995423915020020
    21 schema:sdDatePublished 2019-04-10T20:02
    22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    23 schema:sdPublisher N1cf02d181dc5416e87a423269eb91c17
    24 schema:url http://link.springer.com/10.1134%2FS1995423915020020
    25 sgo:license sg:explorer/license/
    26 sgo:sdDataset articles
    27 rdf:type schema:ScholarlyArticle
    28 N044dc570f6f340faa92f28b922ca5aed schema:name dimensions_id
    29 schema:value pub.1042006288
    30 rdf:type schema:PropertyValue
    31 N1cf02d181dc5416e87a423269eb91c17 schema:name Springer Nature - SN SciGraph project
    32 rdf:type schema:Organization
    33 N3e114fd234934af5b4d32534d81c9a2f rdf:first sg:person.01323037704.34
    34 rdf:rest rdf:nil
    35 N5083d7ac26894c77bc2395a187d1b70b schema:name doi
    36 schema:value 10.1134/s1995423915020020
    37 rdf:type schema:PropertyValue
    38 N75f6156a91c947d18dd01b29c317bd9c rdf:first sg:person.011527055425.11
    39 rdf:rest N3e114fd234934af5b4d32534d81c9a2f
    40 N7db5c91a42084a31af1f7024f49308ab schema:volumeNumber 8
    41 rdf:type schema:PublicationVolume
    42 Naa09ac2b46524c4a8511202caadbba49 schema:name readcube_id
    43 schema:value c8190580848c08978d271017ffa656727859614337f9b7115daaedd0d2f8e644
    44 rdf:type schema:PropertyValue
    45 Nd1137ba19a754433beb78c80c70d65b9 schema:issueNumber 2
    46 rdf:type schema:PublicationIssue
    47 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    48 schema:name Mathematical Sciences
    49 rdf:type schema:DefinedTerm
    50 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Statistics
    52 rdf:type schema:DefinedTerm
    53 sg:journal.1136637 schema:issn 1995-4239
    54 1995-4247
    55 schema:name Numerical Analysis and Applications
    56 rdf:type schema:Periodical
    57 sg:person.011527055425.11 schema:affiliation https://www.grid.ac/institutes/grid.4605.7
    58 schema:familyName Artemiev
    59 schema:givenName S. S.
    60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011527055425.11
    61 rdf:type schema:Person
    62 sg:person.01323037704.34 schema:affiliation https://www.grid.ac/institutes/grid.465353.2
    63 schema:familyName Ivanov
    64 schema:givenName A. A.
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323037704.34
    66 rdf:type schema:Person
    67 sg:pub.10.1134/s0005117907050141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022420303
    68 https://doi.org/10.1134/s0005117907050141
    69 rdf:type schema:CreativeWork
    70 https://www.grid.ac/institutes/grid.4605.7 schema:alternateName Novosibirsk State University
    71 schema:name Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 6, 630090, Novosibirsk, Russia
    72 Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia
    73 rdf:type schema:Organization
    74 https://www.grid.ac/institutes/grid.465353.2 schema:alternateName Institute of Computational Mathematics and Mathematical Geophysics
    75 schema:name Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 6, 630090, Novosibirsk, Russia
    76 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...