Mixed Solutions of Monotone Iterative Technique for Hybrid Fractional Differential Equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02

AUTHORS

Faten H. Damag, Adem Kılıçman, Rabha W. Ibrahim

ABSTRACT

In this present work we concern with mathematical modelling of biological experiments. The fractional hybrid iterative differential equations are suitable for mathematical modelling of biology and also interesting equations since the structure are rich with particular properties. The solution technique is based on the Dhage fixed point theorem that describes the mixed solutions by monotone iterative technique in the nonlinear analysis. In this method we combine two solutions, namely, lower and upper solutions. It is shown an approximate result for the hybrid fractional differential equations in the closed assembly formed by the lower and upper solutions. More... »

PAGES

156-165

References to SciGraph publications

  • 2015-03-05. Existence and uniqueness for a class of iterative fractional differential equations in ADVANCES IN CONTINUOUS AND DISCRETE MODELS
  • 2013-02-11. Theory of fractional hybrid differential equations with linear perturbations of second type in BOUNDARY VALUE PROBLEMS
  • 2016-08-11. Findings of Fractional Iterative Differential Equations Involving First Order Derivative in INTERNATIONAL JOURNAL OF APPLIED AND COMPUTATIONAL MATHEMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1995080219020069

    DOI

    http://dx.doi.org/10.1134/s1995080219020069

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113627236


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University Taiz, Taiz, Yemen", 
              "id": "http://www.grid.ac/institutes/grid.430813.d", 
              "name": [
                "Department of Mathematics, University Taiz, Taiz, Yemen"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Damag", 
            "givenName": "Faten H.", 
            "id": "sg:person.014316132405.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014316132405.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istanbul Gelisim University, Avcilar, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.459507.a", 
              "name": [
                "Department of Mathematics and Institute for Mathematical Researchs, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia", 
                "Istanbul Gelisim University, Avcilar, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "K\u0131l\u0131\u00e7man", 
            "givenName": "Adem", 
            "id": "sg:person.014231676063.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematical Sciences, University Malaya, 50603, Kuala Lumpur, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.10347.31", 
              "name": [
                "Institute of Mathematical Sciences, University Malaya, 50603, Kuala Lumpur, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ibrahim", 
            "givenName": "Rabha W.", 
            "id": "sg:person.013337172413.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013337172413.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1687-2770-2013-23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029518027", 
              "https://doi.org/10.1186/1687-2770-2013-23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40819-016-0221-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033500641", 
              "https://doi.org/10.1007/s40819-016-0221-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13662-015-0421-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020597305", 
              "https://doi.org/10.1186/s13662-015-0421-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "In this present work we concern with mathematical modelling of biological experiments. The fractional hybrid iterative differential equations are suitable for mathematical modelling of biology and also interesting equations since the structure are rich with particular properties. The solution technique is based on the Dhage fixed point theorem that describes the mixed solutions by monotone iterative technique in the nonlinear analysis. In this method we combine two solutions, namely, lower and upper solutions. It is shown an approximate result for the hybrid fractional differential equations in the closed assembly formed by the lower and upper solutions.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s1995080219020069", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136629", 
            "issn": [
              "1995-0802", 
              "1818-9962"
            ], 
            "name": "Lobachevskii Journal of Mathematics", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "40"
          }
        ], 
        "keywords": [
          "hybrid fractional differential equations", 
          "fractional differential equations", 
          "monotone iterative technique", 
          "differential equations", 
          "upper solutions", 
          "mathematical modelling", 
          "iterative technique", 
          "iterative differential equations", 
          "interesting equation", 
          "point theorem", 
          "solution technique", 
          "approximate results", 
          "equations", 
          "nonlinear analysis", 
          "particular properties", 
          "solution", 
          "theorem", 
          "modelling", 
          "closed assembly", 
          "biological experiments", 
          "technique", 
          "present work", 
          "properties", 
          "structure", 
          "work", 
          "experiments", 
          "results", 
          "analysis", 
          "biology", 
          "mixed solution", 
          "assembly", 
          "method"
        ], 
        "name": "Mixed Solutions of Monotone Iterative Technique for Hybrid Fractional Differential Equations", 
        "pagination": "156-165", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113627236"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1995080219020069"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1995080219020069", 
          "https://app.dimensions.ai/details/publication/pub.1113627236"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_795.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s1995080219020069"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1995080219020069'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1995080219020069'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1995080219020069'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1995080219020069'


     

    This table displays all metadata directly associated to this object as RDF triples.

    126 TRIPLES      21 PREDICATES      61 URIs      49 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1995080219020069 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0102
    4 schema:author N75a01bed0933439b88e9fc9885cd5159
    5 schema:citation sg:pub.10.1007/s40819-016-0221-4
    6 sg:pub.10.1186/1687-2770-2013-23
    7 sg:pub.10.1186/s13662-015-0421-y
    8 schema:datePublished 2019-02
    9 schema:datePublishedReg 2019-02-01
    10 schema:description In this present work we concern with mathematical modelling of biological experiments. The fractional hybrid iterative differential equations are suitable for mathematical modelling of biology and also interesting equations since the structure are rich with particular properties. The solution technique is based on the Dhage fixed point theorem that describes the mixed solutions by monotone iterative technique in the nonlinear analysis. In this method we combine two solutions, namely, lower and upper solutions. It is shown an approximate result for the hybrid fractional differential equations in the closed assembly formed by the lower and upper solutions.
    11 schema:genre article
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N3bb463fe3a26475daa74bc6fcf547f26
    14 N88d0f3dd0ebd461bafd472c8098cfdb8
    15 sg:journal.1136629
    16 schema:keywords analysis
    17 approximate results
    18 assembly
    19 biological experiments
    20 biology
    21 closed assembly
    22 differential equations
    23 equations
    24 experiments
    25 fractional differential equations
    26 hybrid fractional differential equations
    27 interesting equation
    28 iterative differential equations
    29 iterative technique
    30 mathematical modelling
    31 method
    32 mixed solution
    33 modelling
    34 monotone iterative technique
    35 nonlinear analysis
    36 particular properties
    37 point theorem
    38 present work
    39 properties
    40 results
    41 solution
    42 solution technique
    43 structure
    44 technique
    45 theorem
    46 upper solutions
    47 work
    48 schema:name Mixed Solutions of Monotone Iterative Technique for Hybrid Fractional Differential Equations
    49 schema:pagination 156-165
    50 schema:productId N4bb10e5318b34f3c9b8fbece790f14d9
    51 Nc2e99563890a4b98ba5ba1d9c451aea7
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113627236
    53 https://doi.org/10.1134/s1995080219020069
    54 schema:sdDatePublished 2022-12-01T06:38
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N6d116e4df1654b63830eb87ecb2f7ada
    57 schema:url https://doi.org/10.1134/s1995080219020069
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N3bb463fe3a26475daa74bc6fcf547f26 schema:volumeNumber 40
    62 rdf:type schema:PublicationVolume
    63 N4bb10e5318b34f3c9b8fbece790f14d9 schema:name doi
    64 schema:value 10.1134/s1995080219020069
    65 rdf:type schema:PropertyValue
    66 N68cc9ad029584436a36abd54b5af9612 rdf:first sg:person.013337172413.35
    67 rdf:rest rdf:nil
    68 N6d116e4df1654b63830eb87ecb2f7ada schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 N75a01bed0933439b88e9fc9885cd5159 rdf:first sg:person.014316132405.40
    71 rdf:rest Nfaae346e222d446a82c937199c0bf699
    72 N88d0f3dd0ebd461bafd472c8098cfdb8 schema:issueNumber 2
    73 rdf:type schema:PublicationIssue
    74 Nc2e99563890a4b98ba5ba1d9c451aea7 schema:name dimensions_id
    75 schema:value pub.1113627236
    76 rdf:type schema:PropertyValue
    77 Nfaae346e222d446a82c937199c0bf699 rdf:first sg:person.014231676063.05
    78 rdf:rest N68cc9ad029584436a36abd54b5af9612
    79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Mathematical Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Pure Mathematics
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Applied Mathematics
    87 rdf:type schema:DefinedTerm
    88 sg:journal.1136629 schema:issn 1818-9962
    89 1995-0802
    90 schema:name Lobachevskii Journal of Mathematics
    91 schema:publisher Pleiades Publishing
    92 rdf:type schema:Periodical
    93 sg:person.013337172413.35 schema:affiliation grid-institutes:grid.10347.31
    94 schema:familyName Ibrahim
    95 schema:givenName Rabha W.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013337172413.35
    97 rdf:type schema:Person
    98 sg:person.014231676063.05 schema:affiliation grid-institutes:grid.459507.a
    99 schema:familyName Kılıçman
    100 schema:givenName Adem
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014231676063.05
    102 rdf:type schema:Person
    103 sg:person.014316132405.40 schema:affiliation grid-institutes:grid.430813.d
    104 schema:familyName Damag
    105 schema:givenName Faten H.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014316132405.40
    107 rdf:type schema:Person
    108 sg:pub.10.1007/s40819-016-0221-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033500641
    109 https://doi.org/10.1007/s40819-016-0221-4
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1186/1687-2770-2013-23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029518027
    112 https://doi.org/10.1186/1687-2770-2013-23
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1186/s13662-015-0421-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020597305
    115 https://doi.org/10.1186/s13662-015-0421-y
    116 rdf:type schema:CreativeWork
    117 grid-institutes:grid.10347.31 schema:alternateName Institute of Mathematical Sciences, University Malaya, 50603, Kuala Lumpur, Malaysia
    118 schema:name Institute of Mathematical Sciences, University Malaya, 50603, Kuala Lumpur, Malaysia
    119 rdf:type schema:Organization
    120 grid-institutes:grid.430813.d schema:alternateName Department of Mathematics, University Taiz, Taiz, Yemen
    121 schema:name Department of Mathematics, University Taiz, Taiz, Yemen
    122 rdf:type schema:Organization
    123 grid-institutes:grid.459507.a schema:alternateName Istanbul Gelisim University, Avcilar, Turkey
    124 schema:name Department of Mathematics and Institute for Mathematical Researchs, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
    125 Istanbul Gelisim University, Avcilar, Turkey
    126 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...