Stable regimes of dynamic systems with impulsive influences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

L. I. Ivanovsky

ABSTRACT

Let us consider a mathematical model of dynamic system, which is presented as a chain of three connected, singularly perturbed nonlinear differential equations. In the further text there were researched the questions of existence and stability of periodic solutions of this system due to a bifurcational analysis of special two-dimensional map. Also the special attention is paid to the number of coexisting stable regimes. More... »

PAGES

921-925

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s199508021705016x

DOI

http://dx.doi.org/10.1134/s199508021705016x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091827344


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Scientific Center", 
          "id": "https://www.grid.ac/institutes/grid.465407.4", 
          "name": [
            "Yaroslavl State University, 150000, Yaroslavl, Russia", 
            "Scientific Center in Chernogolovka of Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanovsky", 
        "givenName": "L. I.", 
        "id": "sg:person.014732740500.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014732740500.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0012266111120019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009430572", 
          "https://doi.org/10.1134/s0012266111120019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266112020012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012649782", 
          "https://doi.org/10.1134/s0012266112020012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm2015v070n03abeh004951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058198497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/727/1/012004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059166759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18255/1818-1015-2015-3-404-419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068592110"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "Let us consider a mathematical model of dynamic system, which is presented as a chain of three connected, singularly perturbed nonlinear differential equations. In the further text there were researched the questions of existence and stability of periodic solutions of this system due to a bifurcational analysis of special two-dimensional map. Also the special attention is paid to the number of coexisting stable regimes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s199508021705016x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136629", 
        "issn": [
          "1818-9962", 
          "1995-0802"
        ], 
        "name": "Lobachevskii Journal of Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Stable regimes of dynamic systems with impulsive influences", 
    "pagination": "921-925", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d29be3229c8d5201be46b406736621ad6ce7ddbabef95bfd3879695497ad5775"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s199508021705016x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091827344"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s199508021705016x", 
      "https://app.dimensions.ai/details/publication/pub.1091827344"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000528.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS199508021705016X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s199508021705016x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s199508021705016x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s199508021705016x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s199508021705016x'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s199508021705016x schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nbf191094631a4b8da47ea1016f5f6758
4 schema:citation sg:pub.10.1134/s0012266111120019
5 sg:pub.10.1134/s0012266112020012
6 https://doi.org/10.1070/rm2015v070n03abeh004951
7 https://doi.org/10.1088/1742-6596/727/1/012004
8 https://doi.org/10.18255/1818-1015-2015-3-404-419
9 schema:datePublished 2017-09
10 schema:datePublishedReg 2017-09-01
11 schema:description Let us consider a mathematical model of dynamic system, which is presented as a chain of three connected, singularly perturbed nonlinear differential equations. In the further text there were researched the questions of existence and stability of periodic solutions of this system due to a bifurcational analysis of special two-dimensional map. Also the special attention is paid to the number of coexisting stable regimes.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N3b79c5bc347e4f60b46b5a2eacecdee8
16 N50007032e2bf41eba5a5def42c5a5d38
17 sg:journal.1136629
18 schema:name Stable regimes of dynamic systems with impulsive influences
19 schema:pagination 921-925
20 schema:productId N5d7ff910e976471d9bf7d1a053c88cd9
21 N72d75cde5df043cbac49ee75fd33eb9e
22 N98f4532e3be54b18a3af65f599cefeea
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091827344
24 https://doi.org/10.1134/s199508021705016x
25 schema:sdDatePublished 2019-04-10T15:55
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nda8044b6fc894971bcb40c273486afa9
28 schema:url http://link.springer.com/10.1134%2FS199508021705016X
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N3b79c5bc347e4f60b46b5a2eacecdee8 schema:volumeNumber 38
33 rdf:type schema:PublicationVolume
34 N50007032e2bf41eba5a5def42c5a5d38 schema:issueNumber 5
35 rdf:type schema:PublicationIssue
36 N5d7ff910e976471d9bf7d1a053c88cd9 schema:name dimensions_id
37 schema:value pub.1091827344
38 rdf:type schema:PropertyValue
39 N72d75cde5df043cbac49ee75fd33eb9e schema:name doi
40 schema:value 10.1134/s199508021705016x
41 rdf:type schema:PropertyValue
42 N98f4532e3be54b18a3af65f599cefeea schema:name readcube_id
43 schema:value d29be3229c8d5201be46b406736621ad6ce7ddbabef95bfd3879695497ad5775
44 rdf:type schema:PropertyValue
45 Nbf191094631a4b8da47ea1016f5f6758 rdf:first sg:person.014732740500.08
46 rdf:rest rdf:nil
47 Nda8044b6fc894971bcb40c273486afa9 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
50 schema:name Mathematical Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
53 schema:name Applied Mathematics
54 rdf:type schema:DefinedTerm
55 sg:journal.1136629 schema:issn 1818-9962
56 1995-0802
57 schema:name Lobachevskii Journal of Mathematics
58 rdf:type schema:Periodical
59 sg:person.014732740500.08 schema:affiliation https://www.grid.ac/institutes/grid.465407.4
60 schema:familyName Ivanovsky
61 schema:givenName L. I.
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014732740500.08
63 rdf:type schema:Person
64 sg:pub.10.1134/s0012266111120019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009430572
65 https://doi.org/10.1134/s0012266111120019
66 rdf:type schema:CreativeWork
67 sg:pub.10.1134/s0012266112020012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012649782
68 https://doi.org/10.1134/s0012266112020012
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1070/rm2015v070n03abeh004951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058198497
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1088/1742-6596/727/1/012004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059166759
73 rdf:type schema:CreativeWork
74 https://doi.org/10.18255/1818-1015-2015-3-404-419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068592110
75 rdf:type schema:CreativeWork
76 https://www.grid.ac/institutes/grid.465407.4 schema:alternateName Scientific Center
77 schema:name Scientific Center in Chernogolovka of Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
78 Yaroslavl State University, 150000, Yaroslavl, Russia
79 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...