Stable regimes of dynamic systems with impulsive influences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

L. I. Ivanovsky

ABSTRACT

Let us consider a mathematical model of dynamic system, which is presented as a chain of three connected, singularly perturbed nonlinear differential equations. In the further text there were researched the questions of existence and stability of periodic solutions of this system due to a bifurcational analysis of special two-dimensional map. Also the special attention is paid to the number of coexisting stable regimes. More... »

PAGES

921-925

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s199508021705016x

DOI

http://dx.doi.org/10.1134/s199508021705016x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091827344


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Scientific Center", 
          "id": "https://www.grid.ac/institutes/grid.465407.4", 
          "name": [
            "Yaroslavl State University, 150000, Yaroslavl, Russia", 
            "Scientific Center in Chernogolovka of Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanovsky", 
        "givenName": "L. I.", 
        "id": "sg:person.014732740500.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014732740500.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0012266111120019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009430572", 
          "https://doi.org/10.1134/s0012266111120019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266112020012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012649782", 
          "https://doi.org/10.1134/s0012266112020012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm2015v070n03abeh004951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058198497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/727/1/012004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059166759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18255/1818-1015-2015-3-404-419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068592110"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "Let us consider a mathematical model of dynamic system, which is presented as a chain of three connected, singularly perturbed nonlinear differential equations. In the further text there were researched the questions of existence and stability of periodic solutions of this system due to a bifurcational analysis of special two-dimensional map. Also the special attention is paid to the number of coexisting stable regimes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s199508021705016x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136629", 
        "issn": [
          "1818-9962", 
          "1995-0802"
        ], 
        "name": "Lobachevskii Journal of Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Stable regimes of dynamic systems with impulsive influences", 
    "pagination": "921-925", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d29be3229c8d5201be46b406736621ad6ce7ddbabef95bfd3879695497ad5775"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s199508021705016x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091827344"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s199508021705016x", 
      "https://app.dimensions.ai/details/publication/pub.1091827344"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000528.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS199508021705016X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s199508021705016x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s199508021705016x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s199508021705016x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s199508021705016x'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s199508021705016x schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N41ddaa9a36ec4658b7a1d3cd4f66f048
4 schema:citation sg:pub.10.1134/s0012266111120019
5 sg:pub.10.1134/s0012266112020012
6 https://doi.org/10.1070/rm2015v070n03abeh004951
7 https://doi.org/10.1088/1742-6596/727/1/012004
8 https://doi.org/10.18255/1818-1015-2015-3-404-419
9 schema:datePublished 2017-09
10 schema:datePublishedReg 2017-09-01
11 schema:description Let us consider a mathematical model of dynamic system, which is presented as a chain of three connected, singularly perturbed nonlinear differential equations. In the further text there were researched the questions of existence and stability of periodic solutions of this system due to a bifurcational analysis of special two-dimensional map. Also the special attention is paid to the number of coexisting stable regimes.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N1d589f81c1a440618a05570e2790475c
16 N62553394bd30426eb44d64dab4b36940
17 sg:journal.1136629
18 schema:name Stable regimes of dynamic systems with impulsive influences
19 schema:pagination 921-925
20 schema:productId N3d6cf43e2148425182405005ce3a5ec8
21 N82969a237af745ffaac897305832aa6c
22 Nd146835110624c18ae6dddf1234c2163
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091827344
24 https://doi.org/10.1134/s199508021705016x
25 schema:sdDatePublished 2019-04-10T15:55
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nc0cba5eaf9984c89b567eae4baafb5b9
28 schema:url http://link.springer.com/10.1134%2FS199508021705016X
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N1d589f81c1a440618a05570e2790475c schema:volumeNumber 38
33 rdf:type schema:PublicationVolume
34 N3d6cf43e2148425182405005ce3a5ec8 schema:name readcube_id
35 schema:value d29be3229c8d5201be46b406736621ad6ce7ddbabef95bfd3879695497ad5775
36 rdf:type schema:PropertyValue
37 N41ddaa9a36ec4658b7a1d3cd4f66f048 rdf:first sg:person.014732740500.08
38 rdf:rest rdf:nil
39 N62553394bd30426eb44d64dab4b36940 schema:issueNumber 5
40 rdf:type schema:PublicationIssue
41 N82969a237af745ffaac897305832aa6c schema:name dimensions_id
42 schema:value pub.1091827344
43 rdf:type schema:PropertyValue
44 Nc0cba5eaf9984c89b567eae4baafb5b9 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Nd146835110624c18ae6dddf1234c2163 schema:name doi
47 schema:value 10.1134/s199508021705016x
48 rdf:type schema:PropertyValue
49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
50 schema:name Mathematical Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
53 schema:name Applied Mathematics
54 rdf:type schema:DefinedTerm
55 sg:journal.1136629 schema:issn 1818-9962
56 1995-0802
57 schema:name Lobachevskii Journal of Mathematics
58 rdf:type schema:Periodical
59 sg:person.014732740500.08 schema:affiliation https://www.grid.ac/institutes/grid.465407.4
60 schema:familyName Ivanovsky
61 schema:givenName L. I.
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014732740500.08
63 rdf:type schema:Person
64 sg:pub.10.1134/s0012266111120019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009430572
65 https://doi.org/10.1134/s0012266111120019
66 rdf:type schema:CreativeWork
67 sg:pub.10.1134/s0012266112020012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012649782
68 https://doi.org/10.1134/s0012266112020012
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1070/rm2015v070n03abeh004951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058198497
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1088/1742-6596/727/1/012004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059166759
73 rdf:type schema:CreativeWork
74 https://doi.org/10.18255/1818-1015-2015-3-404-419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068592110
75 rdf:type schema:CreativeWork
76 https://www.grid.ac/institutes/grid.465407.4 schema:alternateName Scientific Center
77 schema:name Scientific Center in Chernogolovka of Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
78 Yaroslavl State University, 150000, Yaroslavl, Russia
79 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...