Optimization of the Modification Parameters of a Deposited Metal by Nanostructural Fibers of the Aluminium Oxyhydroxide View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

M. A. Kuznetsov, E. A. Zernin, V. I. Danilov, S. P. Zhuravkov, A. V. Kryukov

ABSTRACT

The travel pattern of the nanostructured fibers of aluminium oxyhydroxide in the laminar flow of the argon carrier gas has been developed. On the basis of this pattern, the optimum range of the fiber size, providing the effective transportation of the modifying agent by the gas flows, is determined. Depending on the concentration of fibers, which are transported by the gas flow, the optimum technical parameters of the modifying agent of the aluminium oxyhydroxide for the austenitic steels are determined. The optimum concentration of the nanostructured fibers of aluminium oxyhydroxide in the argon carrier gas is determined. The modeling results and the efficiency of the developed method were verified by experimental researches for the depositing of the surface layers by the argon inert-gas arc welding (MIG welding). It was found that, during the modification of the surface layer, built-up by the nanostructured fibers of the aluminium oxyhydroxide at the amount of 0.2 mg/cm3, the maximum modification effect of this layer of the Fe–C–Cr–Ni–Ti system is expressed. The average size of dendrite shows a decrease of 4.5 times in width due to the formation of the additional centers in the melt being inoculants in the crystallizing metal. The share of the most favorable structure of the nonoriented dendrites in the bulk of the deposited layer increases from 43 to 62%. More... »

PAGES

521-530

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1995078018050087

DOI

http://dx.doi.org/10.1134/s1995078018050087

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112851163


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Yurga Technological Institute, Tomsk Polytechnic University, 652050, Yurga, Kemerovo oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsov", 
        "givenName": "M. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Yurga Technological Institute, Tomsk Polytechnic University, 652050, Yurga, Kemerovo oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zernin", 
        "givenName": "E. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danilov", 
        "givenName": "V. I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Tomsk Polytechnic University, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhuravkov", 
        "givenName": "S. P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Yurga Technological Institute, Tomsk Polytechnic University, 652050, Yurga, Kemerovo oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kryukov", 
        "givenName": "A. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1166/jctn.2012.2239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006999035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995078009070143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039175445", 
          "https://doi.org/10.1134/s1995078009070143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6462(01)00757-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042687703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995078009110019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050802697", 
          "https://doi.org/10.1134/s1995078009110019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995078009110019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050802697", 
          "https://doi.org/10.1134/s1995078009110019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.762.717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072141716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11015-017-0487-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091211093", 
          "https://doi.org/10.1007/s11015-017-0487-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11015-017-0487-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091211093", 
          "https://doi.org/10.1007/s11015-017-0487-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2017.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092830979"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "The travel pattern of the nanostructured fibers of aluminium oxyhydroxide in the laminar flow of the argon carrier gas has been developed. On the basis of this pattern, the optimum range of the fiber size, providing the effective transportation of the modifying agent by the gas flows, is determined. Depending on the concentration of fibers, which are transported by the gas flow, the optimum technical parameters of the modifying agent of the aluminium oxyhydroxide for the austenitic steels are determined. The optimum concentration of the nanostructured fibers of aluminium oxyhydroxide in the argon carrier gas is determined. The modeling results and the efficiency of the developed method were verified by experimental researches for the depositing of the surface layers by the argon inert-gas arc welding (MIG welding). It was found that, during the modification of the surface layer, built-up by the nanostructured fibers of the aluminium oxyhydroxide at the amount of 0.2 mg/cm3, the maximum modification effect of this layer of the Fe\u2013C\u2013Cr\u2013Ni\u2013Ti system is expressed. The average size of dendrite shows a decrease of 4.5 times in width due to the formation of the additional centers in the melt being inoculants in the crystallizing metal. The share of the most favorable structure of the nonoriented dendrites in the bulk of the deposited layer increases from 43 to 62%.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1995078018050087", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052540", 
        "issn": [
          "1995-0780", 
          "1995-0799"
        ], 
        "name": "Nanotechnologies in Russia", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9-10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Optimization of the Modification Parameters of a Deposited Metal by Nanostructural Fibers of the Aluminium Oxyhydroxide", 
    "pagination": "521-530", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e6b07517f0d7e544071545fdb2ac663f846055989a0c869c6589b7e66d17072"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1995078018050087"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112851163"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1995078018050087", 
      "https://app.dimensions.ai/details/publication/pub.1112851163"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54003_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1995078018050087"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1995078018050087'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1995078018050087'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1995078018050087'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1995078018050087'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1995078018050087 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf879b7966c6b4fe49ddc8514c85974a4
4 schema:citation sg:pub.10.1007/s11015-017-0487-8
5 sg:pub.10.1134/s1995078009070143
6 sg:pub.10.1134/s1995078009110019
7 https://doi.org/10.1016/j.jmatprotec.2017.11.015
8 https://doi.org/10.1016/s1359-6462(01)00757-6
9 https://doi.org/10.1166/jctn.2012.2239
10 https://doi.org/10.4028/www.scientific.net/msf.762.717
11 schema:datePublished 2018-09
12 schema:datePublishedReg 2018-09-01
13 schema:description The travel pattern of the nanostructured fibers of aluminium oxyhydroxide in the laminar flow of the argon carrier gas has been developed. On the basis of this pattern, the optimum range of the fiber size, providing the effective transportation of the modifying agent by the gas flows, is determined. Depending on the concentration of fibers, which are transported by the gas flow, the optimum technical parameters of the modifying agent of the aluminium oxyhydroxide for the austenitic steels are determined. The optimum concentration of the nanostructured fibers of aluminium oxyhydroxide in the argon carrier gas is determined. The modeling results and the efficiency of the developed method were verified by experimental researches for the depositing of the surface layers by the argon inert-gas arc welding (MIG welding). It was found that, during the modification of the surface layer, built-up by the nanostructured fibers of the aluminium oxyhydroxide at the amount of 0.2 mg/cm3, the maximum modification effect of this layer of the Fe–C–Cr–Ni–Ti system is expressed. The average size of dendrite shows a decrease of 4.5 times in width due to the formation of the additional centers in the melt being inoculants in the crystallizing metal. The share of the most favorable structure of the nonoriented dendrites in the bulk of the deposited layer increases from 43 to 62%.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nab8f4f43e4b9482b9a6c58618b865aee
18 Nff4afe44d5334c5caf90ee8125f1cebf
19 sg:journal.1052540
20 schema:name Optimization of the Modification Parameters of a Deposited Metal by Nanostructural Fibers of the Aluminium Oxyhydroxide
21 schema:pagination 521-530
22 schema:productId N45bea5af7aa3479eafe6dd113866a30b
23 N979b588de22a45c3aaf60210035c92ea
24 Nd1e01109b5a14f0d8b6dabc127b3dc76
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112851163
26 https://doi.org/10.1134/s1995078018050087
27 schema:sdDatePublished 2019-04-11T12:14
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Nadf498858b4340c3877a41cc956b5d93
30 schema:url https://link.springer.com/10.1134%2FS1995078018050087
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N20079b8ba64644bdaea5d62d629bbf10 rdf:first Nf5efd09d1036462ab72f36e22a751524
35 rdf:rest Nef2fc74545a44037a225905c70c02d66
36 N2f3f160399994c11818235e864e45f73 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
37 schema:familyName Kryukov
38 schema:givenName A. V.
39 rdf:type schema:Person
40 N45bea5af7aa3479eafe6dd113866a30b schema:name doi
41 schema:value 10.1134/s1995078018050087
42 rdf:type schema:PropertyValue
43 N5873adcce3824334841040156d4d02c4 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
44 schema:familyName Zernin
45 schema:givenName E. A.
46 rdf:type schema:Person
47 N979b588de22a45c3aaf60210035c92ea schema:name dimensions_id
48 schema:value pub.1112851163
49 rdf:type schema:PropertyValue
50 Nab8f4f43e4b9482b9a6c58618b865aee schema:volumeNumber 13
51 rdf:type schema:PublicationVolume
52 Nadf498858b4340c3877a41cc956b5d93 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Ncc2cecbf7db645f2b287df3611234bfd rdf:first N5873adcce3824334841040156d4d02c4
55 rdf:rest Ndf2c0437eeed4ccdaa49a43b06895c84
56 Nd1e01109b5a14f0d8b6dabc127b3dc76 schema:name readcube_id
57 schema:value 2e6b07517f0d7e544071545fdb2ac663f846055989a0c869c6589b7e66d17072
58 rdf:type schema:PropertyValue
59 Nd2fad7bf428c45fcb55d408aefb0e6e5 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
60 schema:familyName Kuznetsov
61 schema:givenName M. A.
62 rdf:type schema:Person
63 Ndf2c0437eeed4ccdaa49a43b06895c84 rdf:first Ne1bf94b9029c4d269eb61659c6770db0
64 rdf:rest N20079b8ba64644bdaea5d62d629bbf10
65 Ne1bf94b9029c4d269eb61659c6770db0 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
66 schema:familyName Danilov
67 schema:givenName V. I.
68 rdf:type schema:Person
69 Nef2fc74545a44037a225905c70c02d66 rdf:first N2f3f160399994c11818235e864e45f73
70 rdf:rest rdf:nil
71 Nf5efd09d1036462ab72f36e22a751524 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
72 schema:familyName Zhuravkov
73 schema:givenName S. P.
74 rdf:type schema:Person
75 Nf879b7966c6b4fe49ddc8514c85974a4 rdf:first Nd2fad7bf428c45fcb55d408aefb0e6e5
76 rdf:rest Ncc2cecbf7db645f2b287df3611234bfd
77 Nff4afe44d5334c5caf90ee8125f1cebf schema:issueNumber 9-10
78 rdf:type schema:PublicationIssue
79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
80 schema:name Engineering
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
83 schema:name Materials Engineering
84 rdf:type schema:DefinedTerm
85 sg:journal.1052540 schema:issn 1995-0780
86 1995-0799
87 schema:name Nanotechnologies in Russia
88 rdf:type schema:Periodical
89 sg:pub.10.1007/s11015-017-0487-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091211093
90 https://doi.org/10.1007/s11015-017-0487-8
91 rdf:type schema:CreativeWork
92 sg:pub.10.1134/s1995078009070143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039175445
93 https://doi.org/10.1134/s1995078009070143
94 rdf:type schema:CreativeWork
95 sg:pub.10.1134/s1995078009110019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050802697
96 https://doi.org/10.1134/s1995078009110019
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.jmatprotec.2017.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092830979
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/s1359-6462(01)00757-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042687703
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1166/jctn.2012.2239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006999035
103 rdf:type schema:CreativeWork
104 https://doi.org/10.4028/www.scientific.net/msf.762.717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072141716
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.27736.37 schema:alternateName Tomsk Polytechnic University
107 schema:name Tomsk Polytechnic University, 634055, Tomsk, Russia
108 Yurga Technological Institute, Tomsk Polytechnic University, 652050, Yurga, Kemerovo oblast, Russia
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science
111 schema:name Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...