Optimization of the Modification Parameters of a Deposited Metal by Nanostructural Fibers of the Aluminium Oxyhydroxide View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

M. A. Kuznetsov, E. A. Zernin, V. I. Danilov, S. P. Zhuravkov, A. V. Kryukov

ABSTRACT

The travel pattern of the nanostructured fibers of aluminium oxyhydroxide in the laminar flow of the argon carrier gas has been developed. On the basis of this pattern, the optimum range of the fiber size, providing the effective transportation of the modifying agent by the gas flows, is determined. Depending on the concentration of fibers, which are transported by the gas flow, the optimum technical parameters of the modifying agent of the aluminium oxyhydroxide for the austenitic steels are determined. The optimum concentration of the nanostructured fibers of aluminium oxyhydroxide in the argon carrier gas is determined. The modeling results and the efficiency of the developed method were verified by experimental researches for the depositing of the surface layers by the argon inert-gas arc welding (MIG welding). It was found that, during the modification of the surface layer, built-up by the nanostructured fibers of the aluminium oxyhydroxide at the amount of 0.2 mg/cm3, the maximum modification effect of this layer of the Fe–C–Cr–Ni–Ti system is expressed. The average size of dendrite shows a decrease of 4.5 times in width due to the formation of the additional centers in the melt being inoculants in the crystallizing metal. The share of the most favorable structure of the nonoriented dendrites in the bulk of the deposited layer increases from 43 to 62%. More... »

PAGES

521-530

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1995078018050087

DOI

http://dx.doi.org/10.1134/s1995078018050087

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112851163


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Yurga Technological Institute, Tomsk Polytechnic University, 652050, Yurga, Kemerovo oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsov", 
        "givenName": "M. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Yurga Technological Institute, Tomsk Polytechnic University, 652050, Yurga, Kemerovo oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zernin", 
        "givenName": "E. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danilov", 
        "givenName": "V. I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Tomsk Polytechnic University, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhuravkov", 
        "givenName": "S. P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Yurga Technological Institute, Tomsk Polytechnic University, 652050, Yurga, Kemerovo oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kryukov", 
        "givenName": "A. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1166/jctn.2012.2239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006999035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995078009070143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039175445", 
          "https://doi.org/10.1134/s1995078009070143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6462(01)00757-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042687703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995078009110019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050802697", 
          "https://doi.org/10.1134/s1995078009110019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995078009110019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050802697", 
          "https://doi.org/10.1134/s1995078009110019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.762.717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072141716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11015-017-0487-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091211093", 
          "https://doi.org/10.1007/s11015-017-0487-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11015-017-0487-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091211093", 
          "https://doi.org/10.1007/s11015-017-0487-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2017.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092830979"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "The travel pattern of the nanostructured fibers of aluminium oxyhydroxide in the laminar flow of the argon carrier gas has been developed. On the basis of this pattern, the optimum range of the fiber size, providing the effective transportation of the modifying agent by the gas flows, is determined. Depending on the concentration of fibers, which are transported by the gas flow, the optimum technical parameters of the modifying agent of the aluminium oxyhydroxide for the austenitic steels are determined. The optimum concentration of the nanostructured fibers of aluminium oxyhydroxide in the argon carrier gas is determined. The modeling results and the efficiency of the developed method were verified by experimental researches for the depositing of the surface layers by the argon inert-gas arc welding (MIG welding). It was found that, during the modification of the surface layer, built-up by the nanostructured fibers of the aluminium oxyhydroxide at the amount of 0.2 mg/cm3, the maximum modification effect of this layer of the Fe\u2013C\u2013Cr\u2013Ni\u2013Ti system is expressed. The average size of dendrite shows a decrease of 4.5 times in width due to the formation of the additional centers in the melt being inoculants in the crystallizing metal. The share of the most favorable structure of the nonoriented dendrites in the bulk of the deposited layer increases from 43 to 62%.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1995078018050087", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052540", 
        "issn": [
          "1995-0780", 
          "1995-0799"
        ], 
        "name": "Nanotechnologies in Russia", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9-10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Optimization of the Modification Parameters of a Deposited Metal by Nanostructural Fibers of the Aluminium Oxyhydroxide", 
    "pagination": "521-530", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e6b07517f0d7e544071545fdb2ac663f846055989a0c869c6589b7e66d17072"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1995078018050087"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112851163"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1995078018050087", 
      "https://app.dimensions.ai/details/publication/pub.1112851163"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54003_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1995078018050087"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1995078018050087'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1995078018050087'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1995078018050087'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1995078018050087'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1995078018050087 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N33dfcacd14f04ce893f8b42b52fc5aa9
4 schema:citation sg:pub.10.1007/s11015-017-0487-8
5 sg:pub.10.1134/s1995078009070143
6 sg:pub.10.1134/s1995078009110019
7 https://doi.org/10.1016/j.jmatprotec.2017.11.015
8 https://doi.org/10.1016/s1359-6462(01)00757-6
9 https://doi.org/10.1166/jctn.2012.2239
10 https://doi.org/10.4028/www.scientific.net/msf.762.717
11 schema:datePublished 2018-09
12 schema:datePublishedReg 2018-09-01
13 schema:description The travel pattern of the nanostructured fibers of aluminium oxyhydroxide in the laminar flow of the argon carrier gas has been developed. On the basis of this pattern, the optimum range of the fiber size, providing the effective transportation of the modifying agent by the gas flows, is determined. Depending on the concentration of fibers, which are transported by the gas flow, the optimum technical parameters of the modifying agent of the aluminium oxyhydroxide for the austenitic steels are determined. The optimum concentration of the nanostructured fibers of aluminium oxyhydroxide in the argon carrier gas is determined. The modeling results and the efficiency of the developed method were verified by experimental researches for the depositing of the surface layers by the argon inert-gas arc welding (MIG welding). It was found that, during the modification of the surface layer, built-up by the nanostructured fibers of the aluminium oxyhydroxide at the amount of 0.2 mg/cm3, the maximum modification effect of this layer of the Fe–C–Cr–Ni–Ti system is expressed. The average size of dendrite shows a decrease of 4.5 times in width due to the formation of the additional centers in the melt being inoculants in the crystallizing metal. The share of the most favorable structure of the nonoriented dendrites in the bulk of the deposited layer increases from 43 to 62%.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N35920975a9b94b1ba9a4c71b42548a53
18 Na3156ea2c43f40c1969cfcc0a4a5ef66
19 sg:journal.1052540
20 schema:name Optimization of the Modification Parameters of a Deposited Metal by Nanostructural Fibers of the Aluminium Oxyhydroxide
21 schema:pagination 521-530
22 schema:productId N01d61a0cf1d6497d988a4ad3406517c4
23 N045737ae14ea42c9a74403424ca690af
24 N3f2c8e98740c4024a1df363d3560647a
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112851163
26 https://doi.org/10.1134/s1995078018050087
27 schema:sdDatePublished 2019-04-11T12:14
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Nd9966aa7b8844b4fa6c25d17c28a2b4e
30 schema:url https://link.springer.com/10.1134%2FS1995078018050087
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N01d61a0cf1d6497d988a4ad3406517c4 schema:name doi
35 schema:value 10.1134/s1995078018050087
36 rdf:type schema:PropertyValue
37 N029a401cfdac4ba0bc0e473a68610217 rdf:first Ne1a9e3c1da7740a9a6836902422e25d7
38 rdf:rest rdf:nil
39 N045737ae14ea42c9a74403424ca690af schema:name readcube_id
40 schema:value 2e6b07517f0d7e544071545fdb2ac663f846055989a0c869c6589b7e66d17072
41 rdf:type schema:PropertyValue
42 N0bab62f07bed4bb9a7e4e54828f02620 rdf:first N390b8c5433cb441995226f2ea4fa534b
43 rdf:rest N8a648fdd039040068f25901bd1c92801
44 N28b81cb74e204dba8b6a53c277a23536 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
45 schema:familyName Kuznetsov
46 schema:givenName M. A.
47 rdf:type schema:Person
48 N33dfcacd14f04ce893f8b42b52fc5aa9 rdf:first N28b81cb74e204dba8b6a53c277a23536
49 rdf:rest N0bab62f07bed4bb9a7e4e54828f02620
50 N35920975a9b94b1ba9a4c71b42548a53 schema:issueNumber 9-10
51 rdf:type schema:PublicationIssue
52 N390b8c5433cb441995226f2ea4fa534b schema:affiliation https://www.grid.ac/institutes/grid.27736.37
53 schema:familyName Zernin
54 schema:givenName E. A.
55 rdf:type schema:Person
56 N3f2c8e98740c4024a1df363d3560647a schema:name dimensions_id
57 schema:value pub.1112851163
58 rdf:type schema:PropertyValue
59 N5f45194046cb40ebbe1c96a24ff432b5 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
60 schema:familyName Zhuravkov
61 schema:givenName S. P.
62 rdf:type schema:Person
63 N8a648fdd039040068f25901bd1c92801 rdf:first Ne37a9ac4e27947db9fe1feb2295976a2
64 rdf:rest Na9a02ab44b8c47cea1fb5288ccaa8896
65 Na3156ea2c43f40c1969cfcc0a4a5ef66 schema:volumeNumber 13
66 rdf:type schema:PublicationVolume
67 Na9a02ab44b8c47cea1fb5288ccaa8896 rdf:first N5f45194046cb40ebbe1c96a24ff432b5
68 rdf:rest N029a401cfdac4ba0bc0e473a68610217
69 Nd9966aa7b8844b4fa6c25d17c28a2b4e schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Ne1a9e3c1da7740a9a6836902422e25d7 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
72 schema:familyName Kryukov
73 schema:givenName A. V.
74 rdf:type schema:Person
75 Ne37a9ac4e27947db9fe1feb2295976a2 schema:affiliation https://www.grid.ac/institutes/grid.467103.7
76 schema:familyName Danilov
77 schema:givenName V. I.
78 rdf:type schema:Person
79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
80 schema:name Engineering
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
83 schema:name Materials Engineering
84 rdf:type schema:DefinedTerm
85 sg:journal.1052540 schema:issn 1995-0780
86 1995-0799
87 schema:name Nanotechnologies in Russia
88 rdf:type schema:Periodical
89 sg:pub.10.1007/s11015-017-0487-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091211093
90 https://doi.org/10.1007/s11015-017-0487-8
91 rdf:type schema:CreativeWork
92 sg:pub.10.1134/s1995078009070143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039175445
93 https://doi.org/10.1134/s1995078009070143
94 rdf:type schema:CreativeWork
95 sg:pub.10.1134/s1995078009110019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050802697
96 https://doi.org/10.1134/s1995078009110019
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.jmatprotec.2017.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092830979
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/s1359-6462(01)00757-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042687703
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1166/jctn.2012.2239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006999035
103 rdf:type schema:CreativeWork
104 https://doi.org/10.4028/www.scientific.net/msf.762.717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072141716
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.27736.37 schema:alternateName Tomsk Polytechnic University
107 schema:name Tomsk Polytechnic University, 634055, Tomsk, Russia
108 Yurga Technological Institute, Tomsk Polytechnic University, 652050, Yurga, Kemerovo oblast, Russia
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science
111 schema:name Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...