Optimization of the Modification Parameters of a Deposited Metal by Nanostructural Fibers of the Aluminium Oxyhydroxide View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

M. A. Kuznetsov, E. A. Zernin, V. I. Danilov, S. P. Zhuravkov, A. V. Kryukov

ABSTRACT

The travel pattern of the nanostructured fibers of aluminium oxyhydroxide in the laminar flow of the argon carrier gas has been developed. On the basis of this pattern, the optimum range of the fiber size, providing the effective transportation of the modifying agent by the gas flows, is determined. Depending on the concentration of fibers, which are transported by the gas flow, the optimum technical parameters of the modifying agent of the aluminium oxyhydroxide for the austenitic steels are determined. The optimum concentration of the nanostructured fibers of aluminium oxyhydroxide in the argon carrier gas is determined. The modeling results and the efficiency of the developed method were verified by experimental researches for the depositing of the surface layers by the argon inert-gas arc welding (MIG welding). It was found that, during the modification of the surface layer, built-up by the nanostructured fibers of the aluminium oxyhydroxide at the amount of 0.2 mg/cm3, the maximum modification effect of this layer of the Fe–C–Cr–Ni–Ti system is expressed. The average size of dendrite shows a decrease of 4.5 times in width due to the formation of the additional centers in the melt being inoculants in the crystallizing metal. The share of the most favorable structure of the nonoriented dendrites in the bulk of the deposited layer increases from 43 to 62%. More... »

PAGES

521-530

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1995078018050087

DOI

http://dx.doi.org/10.1134/s1995078018050087

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112851163


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Yurga Technological Institute, Tomsk Polytechnic University, 652050, Yurga, Kemerovo oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsov", 
        "givenName": "M. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Yurga Technological Institute, Tomsk Polytechnic University, 652050, Yurga, Kemerovo oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zernin", 
        "givenName": "E. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danilov", 
        "givenName": "V. I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Tomsk Polytechnic University, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhuravkov", 
        "givenName": "S. P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Yurga Technological Institute, Tomsk Polytechnic University, 652050, Yurga, Kemerovo oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kryukov", 
        "givenName": "A. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1166/jctn.2012.2239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006999035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995078009070143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039175445", 
          "https://doi.org/10.1134/s1995078009070143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6462(01)00757-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042687703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995078009110019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050802697", 
          "https://doi.org/10.1134/s1995078009110019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995078009110019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050802697", 
          "https://doi.org/10.1134/s1995078009110019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.762.717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072141716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11015-017-0487-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091211093", 
          "https://doi.org/10.1007/s11015-017-0487-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11015-017-0487-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091211093", 
          "https://doi.org/10.1007/s11015-017-0487-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2017.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092830979"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "The travel pattern of the nanostructured fibers of aluminium oxyhydroxide in the laminar flow of the argon carrier gas has been developed. On the basis of this pattern, the optimum range of the fiber size, providing the effective transportation of the modifying agent by the gas flows, is determined. Depending on the concentration of fibers, which are transported by the gas flow, the optimum technical parameters of the modifying agent of the aluminium oxyhydroxide for the austenitic steels are determined. The optimum concentration of the nanostructured fibers of aluminium oxyhydroxide in the argon carrier gas is determined. The modeling results and the efficiency of the developed method were verified by experimental researches for the depositing of the surface layers by the argon inert-gas arc welding (MIG welding). It was found that, during the modification of the surface layer, built-up by the nanostructured fibers of the aluminium oxyhydroxide at the amount of 0.2 mg/cm3, the maximum modification effect of this layer of the Fe\u2013C\u2013Cr\u2013Ni\u2013Ti system is expressed. The average size of dendrite shows a decrease of 4.5 times in width due to the formation of the additional centers in the melt being inoculants in the crystallizing metal. The share of the most favorable structure of the nonoriented dendrites in the bulk of the deposited layer increases from 43 to 62%.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1995078018050087", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052540", 
        "issn": [
          "1995-0780", 
          "1995-0799"
        ], 
        "name": "Nanotechnologies in Russia", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9-10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Optimization of the Modification Parameters of a Deposited Metal by Nanostructural Fibers of the Aluminium Oxyhydroxide", 
    "pagination": "521-530", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e6b07517f0d7e544071545fdb2ac663f846055989a0c869c6589b7e66d17072"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1995078018050087"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112851163"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1995078018050087", 
      "https://app.dimensions.ai/details/publication/pub.1112851163"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54003_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1995078018050087"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1995078018050087'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1995078018050087'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1995078018050087'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1995078018050087'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1995078018050087 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Na489de332f7d43539208bb5f182a5743
4 schema:citation sg:pub.10.1007/s11015-017-0487-8
5 sg:pub.10.1134/s1995078009070143
6 sg:pub.10.1134/s1995078009110019
7 https://doi.org/10.1016/j.jmatprotec.2017.11.015
8 https://doi.org/10.1016/s1359-6462(01)00757-6
9 https://doi.org/10.1166/jctn.2012.2239
10 https://doi.org/10.4028/www.scientific.net/msf.762.717
11 schema:datePublished 2018-09
12 schema:datePublishedReg 2018-09-01
13 schema:description The travel pattern of the nanostructured fibers of aluminium oxyhydroxide in the laminar flow of the argon carrier gas has been developed. On the basis of this pattern, the optimum range of the fiber size, providing the effective transportation of the modifying agent by the gas flows, is determined. Depending on the concentration of fibers, which are transported by the gas flow, the optimum technical parameters of the modifying agent of the aluminium oxyhydroxide for the austenitic steels are determined. The optimum concentration of the nanostructured fibers of aluminium oxyhydroxide in the argon carrier gas is determined. The modeling results and the efficiency of the developed method were verified by experimental researches for the depositing of the surface layers by the argon inert-gas arc welding (MIG welding). It was found that, during the modification of the surface layer, built-up by the nanostructured fibers of the aluminium oxyhydroxide at the amount of 0.2 mg/cm3, the maximum modification effect of this layer of the Fe–C–Cr–Ni–Ti system is expressed. The average size of dendrite shows a decrease of 4.5 times in width due to the formation of the additional centers in the melt being inoculants in the crystallizing metal. The share of the most favorable structure of the nonoriented dendrites in the bulk of the deposited layer increases from 43 to 62%.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N2acb34c17a774de1bf1f98a4858baabd
18 Ndb9c452af200495fb0579e793e1a67fe
19 sg:journal.1052540
20 schema:name Optimization of the Modification Parameters of a Deposited Metal by Nanostructural Fibers of the Aluminium Oxyhydroxide
21 schema:pagination 521-530
22 schema:productId N2121db4588594e2292c2fec64d8852ba
23 N897835a11c2d41d3ab6fa9b50df88198
24 Nf4485e7cb3cd40b38e0ca4283b82c0de
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112851163
26 https://doi.org/10.1134/s1995078018050087
27 schema:sdDatePublished 2019-04-11T12:14
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N37332890a90346188208033f84e3e055
30 schema:url https://link.springer.com/10.1134%2FS1995078018050087
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N2121db4588594e2292c2fec64d8852ba schema:name doi
35 schema:value 10.1134/s1995078018050087
36 rdf:type schema:PropertyValue
37 N2acb34c17a774de1bf1f98a4858baabd schema:volumeNumber 13
38 rdf:type schema:PublicationVolume
39 N37332890a90346188208033f84e3e055 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N4f463f297a4940779469af080f30e06b rdf:first Nbe4ef02b5bc248f390878133c48baebd
42 rdf:rest Nd0f3d7c2f876491893942c09967077d2
43 N61853d8eb9f84f39a63caed3205e764f schema:affiliation https://www.grid.ac/institutes/grid.467103.7
44 schema:familyName Danilov
45 schema:givenName V. I.
46 rdf:type schema:Person
47 N62851ad174184050a84e87cb48790ac2 rdf:first Nbd1a928c3b124cf28ea58582e362bdde
48 rdf:rest rdf:nil
49 N859f34f4a268456eba3d8297ac584e94 schema:affiliation https://www.grid.ac/institutes/grid.27736.37
50 schema:familyName Kuznetsov
51 schema:givenName M. A.
52 rdf:type schema:Person
53 N897835a11c2d41d3ab6fa9b50df88198 schema:name dimensions_id
54 schema:value pub.1112851163
55 rdf:type schema:PropertyValue
56 N9b2f348a71d74cee8e7053c6c5eb482f rdf:first Nf4d9e83d0d3b492cbbca434a2743712c
57 rdf:rest N62851ad174184050a84e87cb48790ac2
58 Na489de332f7d43539208bb5f182a5743 rdf:first N859f34f4a268456eba3d8297ac584e94
59 rdf:rest N4f463f297a4940779469af080f30e06b
60 Nbd1a928c3b124cf28ea58582e362bdde schema:affiliation https://www.grid.ac/institutes/grid.27736.37
61 schema:familyName Kryukov
62 schema:givenName A. V.
63 rdf:type schema:Person
64 Nbe4ef02b5bc248f390878133c48baebd schema:affiliation https://www.grid.ac/institutes/grid.27736.37
65 schema:familyName Zernin
66 schema:givenName E. A.
67 rdf:type schema:Person
68 Nd0f3d7c2f876491893942c09967077d2 rdf:first N61853d8eb9f84f39a63caed3205e764f
69 rdf:rest N9b2f348a71d74cee8e7053c6c5eb482f
70 Ndb9c452af200495fb0579e793e1a67fe schema:issueNumber 9-10
71 rdf:type schema:PublicationIssue
72 Nf4485e7cb3cd40b38e0ca4283b82c0de schema:name readcube_id
73 schema:value 2e6b07517f0d7e544071545fdb2ac663f846055989a0c869c6589b7e66d17072
74 rdf:type schema:PropertyValue
75 Nf4d9e83d0d3b492cbbca434a2743712c schema:affiliation https://www.grid.ac/institutes/grid.27736.37
76 schema:familyName Zhuravkov
77 schema:givenName S. P.
78 rdf:type schema:Person
79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
80 schema:name Engineering
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
83 schema:name Materials Engineering
84 rdf:type schema:DefinedTerm
85 sg:journal.1052540 schema:issn 1995-0780
86 1995-0799
87 schema:name Nanotechnologies in Russia
88 rdf:type schema:Periodical
89 sg:pub.10.1007/s11015-017-0487-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091211093
90 https://doi.org/10.1007/s11015-017-0487-8
91 rdf:type schema:CreativeWork
92 sg:pub.10.1134/s1995078009070143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039175445
93 https://doi.org/10.1134/s1995078009070143
94 rdf:type schema:CreativeWork
95 sg:pub.10.1134/s1995078009110019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050802697
96 https://doi.org/10.1134/s1995078009110019
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.jmatprotec.2017.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092830979
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/s1359-6462(01)00757-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042687703
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1166/jctn.2012.2239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006999035
103 rdf:type schema:CreativeWork
104 https://doi.org/10.4028/www.scientific.net/msf.762.717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072141716
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.27736.37 schema:alternateName Tomsk Polytechnic University
107 schema:name Tomsk Polytechnic University, 634055, Tomsk, Russia
108 Yurga Technological Institute, Tomsk Polytechnic University, 652050, Yurga, Kemerovo oblast, Russia
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science
111 schema:name Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...