Removal of Antimicrobial Peptides from Aqueous Solutions Using Carbon Nanotubes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07

AUTHORS

A. V. Timofeeva, A. L. Ksenofontov, O. A. Koksharova

ABSTRACT

The aim of this work is to study the possibility of removing antimicrobial peptides arenicin-1 and tachyplesin-1 from aqueous solutions using new highly hydrophobic nanomaterials—carbon nanotubes (CNTs) Taunit-M. Two types of CNTs, respectively, functionalized and nonfunctionalized with–COOH groups are studied. The RP HPLC method is used for the quantification of peptides in solutions before and after the sorption on the CNTs. It is revealed that tachyplesin-1 and arenicin-1 are actually not adsorbed on nonfunctionalized CNTs. A theoretical calculation of specific hydrophobicity and aliphatic index shows that both peptides have poorly expressed hydrophobic properties, and this can explain lack of their adsorption. On the contrary, using functionalized CNTs makes it possible to remove up to 89% of arenicin-1 and 92% of tachyplesin-1 from the solution. A comparative study of adsorption of the antimicrobial peptide tachyplesin- 1 on nonfunctionalized activated carbons and functionalized CNTs shows that the amount of peptide adsorbed on activated carbons is about three times less than that absorbed on CNTs. It is assumed that the high adsorption capacity of the functionalized CNTs toward the studied peptides results from the functionalization of the sorbent surface with the–COOH groups capable of forming ionic bonds with free–NH2 groups of peptides. This shows the prospects for using functionalized CNTs as sorbents for the removal of toxic preparations of peptide origin from aqueous solutions. More... »

PAGES

443-447

References to SciGraph publications

  • 2005. Protein Identification and Analysis Tools on the ExPASy Server in THE PROTEOMICS PROTOCOLS HANDBOOK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1995078018040158

    DOI

    http://dx.doi.org/10.1134/s1995078018040158

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111224456


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Timofeeva", 
            "givenName": "A. V.", 
            "id": "sg:person.011335636426.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335636426.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ksenofontov", 
            "givenName": "A. L.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119991, Moscow, Russia", 
                "Institute of Molecular Genetics, Russian Academy of Sciences, 123182, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koksharova", 
            "givenName": "O. A.", 
            "id": "sg:person.01332114456.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332114456.92"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0022-2836(82)90515-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001452096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1289/ehp.1408555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026422524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj0410596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031150277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1042/bj0410596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031150277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemosphere.2016.03.083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035856284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1385/1-59259-890-0:571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038854297", 
              "https://doi.org/10.1385/1-59259-890-0:571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scitotenv.2015.05.130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051527905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079079737", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.jbchem.a133168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082368620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781420028812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095903736"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07", 
        "datePublishedReg": "2018-07-01", 
        "description": "The aim of this work is to study the possibility of removing antimicrobial peptides arenicin-1 and tachyplesin-1 from aqueous solutions using new highly hydrophobic nanomaterials\u2014carbon nanotubes (CNTs) Taunit-M. Two types of CNTs, respectively, functionalized and nonfunctionalized with\u2013COOH groups are studied. The RP HPLC method is used for the quantification of peptides in solutions before and after the sorption on the CNTs. It is revealed that tachyplesin-1 and arenicin-1 are actually not adsorbed on nonfunctionalized CNTs. A theoretical calculation of specific hydrophobicity and aliphatic index shows that both peptides have poorly expressed hydrophobic properties, and this can explain lack of their adsorption. On the contrary, using functionalized CNTs makes it possible to remove up to 89% of arenicin-1 and 92% of tachyplesin-1 from the solution. A comparative study of adsorption of the antimicrobial peptide tachyplesin- 1 on nonfunctionalized activated carbons and functionalized CNTs shows that the amount of peptide adsorbed on activated carbons is about three times less than that absorbed on CNTs. It is assumed that the high adsorption capacity of the functionalized CNTs toward the studied peptides results from the functionalization of the sorbent surface with the\u2013COOH groups capable of forming ionic bonds with free\u2013NH2 groups of peptides. This shows the prospects for using functionalized CNTs as sorbents for the removal of toxic preparations of peptide origin from aqueous solutions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1995078018040158", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052540", 
            "issn": [
              "1995-0780", 
              "1995-0799"
            ], 
            "name": "Nanotechnologies in Russia", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7-8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Removal of Antimicrobial Peptides from Aqueous Solutions Using Carbon Nanotubes", 
        "pagination": "443-447", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "24556c82e75edb5e5d57e4f6750c8b0da8c095a5f18b154bda9079e3ab76976d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1995078018040158"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111224456"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1995078018040158", 
          "https://app.dimensions.ai/details/publication/pub.1111224456"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55823_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1134%2FS1995078018040158"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1995078018040158'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1995078018040158'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1995078018040158'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1995078018040158'


     

    This table displays all metadata directly associated to this object as RDF triples.

    105 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1995078018040158 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Naa41e556288b44799809eff0f575bca7
    4 schema:citation sg:pub.10.1385/1-59259-890-0:571
    5 https://app.dimensions.ai/details/publication/pub.1079079737
    6 https://doi.org/10.1016/0022-2836(82)90515-0
    7 https://doi.org/10.1016/j.chemosphere.2016.03.083
    8 https://doi.org/10.1016/j.scitotenv.2015.05.130
    9 https://doi.org/10.1042/bj0410596
    10 https://doi.org/10.1093/oxfordjournals.jbchem.a133168
    11 https://doi.org/10.1201/9781420028812
    12 https://doi.org/10.1289/ehp.1408555
    13 schema:datePublished 2018-07
    14 schema:datePublishedReg 2018-07-01
    15 schema:description The aim of this work is to study the possibility of removing antimicrobial peptides arenicin-1 and tachyplesin-1 from aqueous solutions using new highly hydrophobic nanomaterials—carbon nanotubes (CNTs) Taunit-M. Two types of CNTs, respectively, functionalized and nonfunctionalized with–COOH groups are studied. The RP HPLC method is used for the quantification of peptides in solutions before and after the sorption on the CNTs. It is revealed that tachyplesin-1 and arenicin-1 are actually not adsorbed on nonfunctionalized CNTs. A theoretical calculation of specific hydrophobicity and aliphatic index shows that both peptides have poorly expressed hydrophobic properties, and this can explain lack of their adsorption. On the contrary, using functionalized CNTs makes it possible to remove up to 89% of arenicin-1 and 92% of tachyplesin-1 from the solution. A comparative study of adsorption of the antimicrobial peptide tachyplesin- 1 on nonfunctionalized activated carbons and functionalized CNTs shows that the amount of peptide adsorbed on activated carbons is about three times less than that absorbed on CNTs. It is assumed that the high adsorption capacity of the functionalized CNTs toward the studied peptides results from the functionalization of the sorbent surface with the–COOH groups capable of forming ionic bonds with free–NH2 groups of peptides. This shows the prospects for using functionalized CNTs as sorbents for the removal of toxic preparations of peptide origin from aqueous solutions.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N67144602a35f4d368adf88138438985f
    20 Nbcdc2c492fc74b7da3b0fff2df0c8b65
    21 sg:journal.1052540
    22 schema:name Removal of Antimicrobial Peptides from Aqueous Solutions Using Carbon Nanotubes
    23 schema:pagination 443-447
    24 schema:productId N3f5316c820fb4f5ba87ce2c8d2123a55
    25 N6289eb0e9f9742be91c5b4bd26318729
    26 Nd04018e23b414d5f9176952fcd3b2b3a
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111224456
    28 https://doi.org/10.1134/s1995078018040158
    29 schema:sdDatePublished 2019-04-11T08:36
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N6d2a74f3f19b4bf7881404592cbc4bae
    32 schema:url https://link.springer.com/10.1134%2FS1995078018040158
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N3b49c85093364eb2b606a96b868c17ad rdf:first N5591b33461dc40d383ca3b8591706df2
    37 rdf:rest N6856ca7612e144ef9bafa4f201230eb7
    38 N3f5316c820fb4f5ba87ce2c8d2123a55 schema:name dimensions_id
    39 schema:value pub.1111224456
    40 rdf:type schema:PropertyValue
    41 N5591b33461dc40d383ca3b8591706df2 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    42 schema:familyName Ksenofontov
    43 schema:givenName A. L.
    44 rdf:type schema:Person
    45 N6289eb0e9f9742be91c5b4bd26318729 schema:name readcube_id
    46 schema:value 24556c82e75edb5e5d57e4f6750c8b0da8c095a5f18b154bda9079e3ab76976d
    47 rdf:type schema:PropertyValue
    48 N67144602a35f4d368adf88138438985f schema:issueNumber 7-8
    49 rdf:type schema:PublicationIssue
    50 N6856ca7612e144ef9bafa4f201230eb7 rdf:first sg:person.01332114456.92
    51 rdf:rest rdf:nil
    52 N6d2a74f3f19b4bf7881404592cbc4bae schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 Naa41e556288b44799809eff0f575bca7 rdf:first sg:person.011335636426.66
    55 rdf:rest N3b49c85093364eb2b606a96b868c17ad
    56 Nbcdc2c492fc74b7da3b0fff2df0c8b65 schema:volumeNumber 13
    57 rdf:type schema:PublicationVolume
    58 Nd04018e23b414d5f9176952fcd3b2b3a schema:name doi
    59 schema:value 10.1134/s1995078018040158
    60 rdf:type schema:PropertyValue
    61 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Chemical Sciences
    63 rdf:type schema:DefinedTerm
    64 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Physical Chemistry (incl. Structural)
    66 rdf:type schema:DefinedTerm
    67 sg:journal.1052540 schema:issn 1995-0780
    68 1995-0799
    69 schema:name Nanotechnologies in Russia
    70 rdf:type schema:Periodical
    71 sg:person.011335636426.66 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    72 schema:familyName Timofeeva
    73 schema:givenName A. V.
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335636426.66
    75 rdf:type schema:Person
    76 sg:person.01332114456.92 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    77 schema:familyName Koksharova
    78 schema:givenName O. A.
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332114456.92
    80 rdf:type schema:Person
    81 sg:pub.10.1385/1-59259-890-0:571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038854297
    82 https://doi.org/10.1385/1-59259-890-0:571
    83 rdf:type schema:CreativeWork
    84 https://app.dimensions.ai/details/publication/pub.1079079737 schema:CreativeWork
    85 https://doi.org/10.1016/0022-2836(82)90515-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001452096
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/j.chemosphere.2016.03.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035856284
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/j.scitotenv.2015.05.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051527905
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1042/bj0410596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031150277
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1093/oxfordjournals.jbchem.a133168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082368620
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1201/9781420028812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095903736
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1289/ehp.1408555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026422524
    98 rdf:type schema:CreativeWork
    99 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    100 schema:name Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119991, Moscow, Russia
    101 rdf:type schema:Organization
    102 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    103 schema:name Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119991, Moscow, Russia
    104 Institute of Molecular Genetics, Russian Academy of Sciences, 123182, Moscow, Russia
    105 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...