Antioxidant Activity of Diatomic Phenols View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-02

AUTHORS

I. F. Rusina, T. L. Veprintsev, R. F. Vasil’ev

ABSTRACT

Nine compounds are studied for antioxidant activity, including those from the class of catecholamines containing 3,4-hydroxyphenyl (catechol) as a common structural fragment, which imparts antioxidant properties to the compounds in the reactions of hydrocarbon substrate oxidation. The antiradical activity is determined by the chemiluminescent method by the interception of peroxyl radicals in the model reaction of the initiated oxidation of ethylbenzene (RH). The mechanism of the inhibition of chain oxidation processes by diatomic phenol compounds is provided by the presence of two active hydroxy groups with a possible intramolecular hydrogen bond, leading to a weakening of the О–Н bond and a high rate constant of hydrogen abstraction in the reaction with peroxyl radicals (kinh). This reaction is dominant and determines the inhibitory activity of antioxidants in oxidation processes. The maximum inhibitory activity is shown by 3,5- and 3,6-di-tert-butylpyrocatechins, dopamine, and epicatechin. More... »

PAGES

50-57

References to SciGraph publications

  • 2007-09. Intramolecular hydrogen bonds and antioxidant activity of aminophenols in JOURNAL OF APPLIED SPECTROSCOPY
  • 2013-07. Chemiluminescent methods for studying inhibited oxidation in RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B
  • 2005-04. Reaction of Sterically Congested Phenols and Quinones with Organic Radicals in RUSSIAN JOURNAL OF GENERAL CHEMISTRY
  • 2021-01. The Mechanism of Chemiluminescence in the Thermal Decomposition of 2,2'-Azodiisobutyronitrile in a Liquid Oxygen-Containing Medium in RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B
  • 2020-05. Joint Chemiluminescence of Lophine and Luminol in the Presence of Hydrogen Peroxide and Hemin in RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B
  • 2010-08-19. Antioxidant activity of chalcones: The chemiluminescence determination of the reactivity and the quantum chemical calculation of the energies and structures of reagents and intermediates in KINETICS AND CATALYSIS
  • 2020-05. Extreme Kinetics of Chemiluminescence in the Initiated Oxidation of Vegetable Lipids in RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B
  • 2021-01. Transformation of the Antioxidant Properties of Tar from Tobacco Smoke in Metabolic Processes: Model Chemiluminescence Study in RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B
  • 2014-03. Kinetics of ethylbenzene oxy-chemiluminescence in the presence of antioxidants from tissues of the marine invertebrate Eupentacta fraudatrix: Estimating the concentration and reactivity of the natural antioxidants in KINETICS AND CATALYSIS
  • 2020-10-30. Chemiluminescence in the Auto-Oxidation of Luminol in Dimethyl Sulfoxide: Kinetic Effects of Alkalis, Quenching by Nitroblue Tetrazolium, and Elimination of Quenching by Hydrogen Peroxide in RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A
  • 2011-11-27. Kinetics of lecithin oxidation in liposomal aqueous solutions in COLLOID JOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1990793122010274

    DOI

    http://dx.doi.org/10.1134/s1990793122010274

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147293783


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rusina", 
            "givenName": "I. F.", 
            "id": "sg:person.01267513037.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267513037.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.473785.a", 
              "name": [
                "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Veprintsev", 
            "givenName": "T. L.", 
            "id": "sg:person.0715557241.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715557241.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.473785.a", 
              "name": [
                "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vasil\u2019ev", 
            "givenName": "R. F.", 
            "id": "sg:person.01015677454.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015677454.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s1990793120030252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129785404", 
              "https://doi.org/10.1134/s1990793120030252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1990793113040192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023813574", 
              "https://doi.org/10.1134/s1990793113040192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0023158410040087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016545900", 
              "https://doi.org/10.1134/s0023158410040087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1990793121010231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137439963", 
              "https://doi.org/10.1134/s1990793121010231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1990793121010243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137439964", 
              "https://doi.org/10.1134/s1990793121010243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0036024420110308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132216879", 
              "https://doi.org/10.1134/s0036024420110308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1061933x11050073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050665860", 
              "https://doi.org/10.1134/s1061933x11050073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0023158414020153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051486214", 
              "https://doi.org/10.1134/s0023158414020153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11176-005-0278-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012514342", 
              "https://doi.org/10.1007/s11176-005-0278-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10812-007-0103-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027513480", 
              "https://doi.org/10.1007/s10812-007-0103-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1990793120030264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129786471", 
              "https://doi.org/10.1134/s1990793120030264"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-02", 
        "datePublishedReg": "2022-02-01", 
        "description": "Nine compounds are studied for antioxidant activity, including those from the class of catecholamines containing 3,4-hydroxyphenyl (catechol) as a common structural fragment, which imparts antioxidant properties to the compounds in the reactions of hydrocarbon substrate oxidation. The antiradical activity is determined by the chemiluminescent method by the interception of peroxyl radicals in the model reaction of the initiated oxidation of ethylbenzene (RH). The mechanism of the inhibition of chain oxidation processes by diatomic phenol compounds is provided by the presence of two active hydroxy groups with a possible intramolecular hydrogen bond, leading to a weakening of the \u041e\u2013\u041d bond and a high rate constant of hydrogen abstraction in the reaction with peroxyl radicals (kinh). This reaction is dominant and determines the inhibitory activity of antioxidants in oxidation processes. The maximum inhibitory activity is shown by 3,5- and 3,6-di-tert-butylpyrocatechins, dopamine, and epicatechin.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s1990793122010274", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136550", 
            "issn": [
              "1990-7931", 
              "1990-7923"
            ], 
            "name": "Russian Journal of Physical Chemistry B", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "oxidation process", 
          "peroxyl radicals", 
          "possible intramolecular hydrogen bonds", 
          "chain oxidation processes", 
          "active hydroxy groups", 
          "oxidation of ethylbenzene", 
          "intramolecular hydrogen bonds", 
          "common structural fragments", 
          "model reaction", 
          "hydrogen abstraction", 
          "hydrogen bonds", 
          "diatomic phenols", 
          "hydroxy group", 
          "inhibitory activity", 
          "structural fragments", 
          "antioxidant activity", 
          "phenol compounds", 
          "compounds", 
          "reaction", 
          "antiradical activity", 
          "bonds", 
          "oxidation", 
          "radicals", 
          "chemiluminescent method", 
          "substrate oxidation", 
          "antioxidant properties", 
          "hydroxyphenyl", 
          "ethylbenzene", 
          "phenol", 
          "maximum inhibitory activity", 
          "properties", 
          "activity", 
          "epicatechin", 
          "process", 
          "antioxidants", 
          "fragments", 
          "presence", 
          "abstraction", 
          "dopamine", 
          "weakening", 
          "mechanism", 
          "method", 
          "group", 
          "class", 
          "inhibition", 
          "rate", 
          "high rate", 
          "interception", 
          "catecholamines"
        ], 
        "name": "Antioxidant Activity of Diatomic Phenols", 
        "pagination": "50-57", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147293783"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1990793122010274"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1990793122010274", 
          "https://app.dimensions.ai/details/publication/pub.1147293783"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_932.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s1990793122010274"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1990793122010274'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1990793122010274'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1990793122010274'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1990793122010274'


     

    This table displays all metadata directly associated to this object as RDF triples.

    168 TRIPLES      22 PREDICATES      86 URIs      67 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1990793122010274 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N33c15cceaa92494baee8a5347b84080e
    4 schema:citation sg:pub.10.1007/s10812-007-0103-y
    5 sg:pub.10.1007/s11176-005-0278-y
    6 sg:pub.10.1134/s0023158410040087
    7 sg:pub.10.1134/s0023158414020153
    8 sg:pub.10.1134/s0036024420110308
    9 sg:pub.10.1134/s1061933x11050073
    10 sg:pub.10.1134/s1990793113040192
    11 sg:pub.10.1134/s1990793120030252
    12 sg:pub.10.1134/s1990793120030264
    13 sg:pub.10.1134/s1990793121010231
    14 sg:pub.10.1134/s1990793121010243
    15 schema:datePublished 2022-02
    16 schema:datePublishedReg 2022-02-01
    17 schema:description Nine compounds are studied for antioxidant activity, including those from the class of catecholamines containing 3,4-hydroxyphenyl (catechol) as a common structural fragment, which imparts antioxidant properties to the compounds in the reactions of hydrocarbon substrate oxidation. The antiradical activity is determined by the chemiluminescent method by the interception of peroxyl radicals in the model reaction of the initiated oxidation of ethylbenzene (RH). The mechanism of the inhibition of chain oxidation processes by diatomic phenol compounds is provided by the presence of two active hydroxy groups with a possible intramolecular hydrogen bond, leading to a weakening of the О–Н bond and a high rate constant of hydrogen abstraction in the reaction with peroxyl radicals (kinh). This reaction is dominant and determines the inhibitory activity of antioxidants in oxidation processes. The maximum inhibitory activity is shown by 3,5- and 3,6-di-tert-butylpyrocatechins, dopamine, and epicatechin.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree true
    21 schema:isPartOf Naaaed63a3f074a00bd9562268195c8f2
    22 Ne0c61485b3f84f4aab2b561ceefeaefa
    23 sg:journal.1136550
    24 schema:keywords abstraction
    25 active hydroxy groups
    26 activity
    27 antioxidant activity
    28 antioxidant properties
    29 antioxidants
    30 antiradical activity
    31 bonds
    32 catecholamines
    33 chain oxidation processes
    34 chemiluminescent method
    35 class
    36 common structural fragments
    37 compounds
    38 diatomic phenols
    39 dopamine
    40 epicatechin
    41 ethylbenzene
    42 fragments
    43 group
    44 high rate
    45 hydrogen abstraction
    46 hydrogen bonds
    47 hydroxy group
    48 hydroxyphenyl
    49 inhibition
    50 inhibitory activity
    51 interception
    52 intramolecular hydrogen bonds
    53 maximum inhibitory activity
    54 mechanism
    55 method
    56 model reaction
    57 oxidation
    58 oxidation of ethylbenzene
    59 oxidation process
    60 peroxyl radicals
    61 phenol
    62 phenol compounds
    63 possible intramolecular hydrogen bonds
    64 presence
    65 process
    66 properties
    67 radicals
    68 rate
    69 reaction
    70 structural fragments
    71 substrate oxidation
    72 weakening
    73 schema:name Antioxidant Activity of Diatomic Phenols
    74 schema:pagination 50-57
    75 schema:productId N5a9ebc27ae1142aaacda71149fdd6898
    76 Nf4d0d09c6fee4d3e95bf47c3dfffbbfa
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147293783
    78 https://doi.org/10.1134/s1990793122010274
    79 schema:sdDatePublished 2022-06-01T22:24
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher Nfb0d06e88f9f4ec68ced410533d74c8d
    82 schema:url https://doi.org/10.1134/s1990793122010274
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N33c15cceaa92494baee8a5347b84080e rdf:first sg:person.01267513037.50
    87 rdf:rest N6c1f383286a64fb8b658eca93ef8349f
    88 N4624183964344ab7bb7d15e710406530 rdf:first sg:person.01015677454.25
    89 rdf:rest rdf:nil
    90 N5a9ebc27ae1142aaacda71149fdd6898 schema:name doi
    91 schema:value 10.1134/s1990793122010274
    92 rdf:type schema:PropertyValue
    93 N6c1f383286a64fb8b658eca93ef8349f rdf:first sg:person.0715557241.35
    94 rdf:rest N4624183964344ab7bb7d15e710406530
    95 Naaaed63a3f074a00bd9562268195c8f2 schema:volumeNumber 16
    96 rdf:type schema:PublicationVolume
    97 Ne0c61485b3f84f4aab2b561ceefeaefa schema:issueNumber 1
    98 rdf:type schema:PublicationIssue
    99 Nf4d0d09c6fee4d3e95bf47c3dfffbbfa schema:name dimensions_id
    100 schema:value pub.1147293783
    101 rdf:type schema:PropertyValue
    102 Nfb0d06e88f9f4ec68ced410533d74c8d schema:name Springer Nature - SN SciGraph project
    103 rdf:type schema:Organization
    104 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Chemical Sciences
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Physical Chemistry (incl. Structural)
    109 rdf:type schema:DefinedTerm
    110 sg:journal.1136550 schema:issn 1990-7923
    111 1990-7931
    112 schema:name Russian Journal of Physical Chemistry B
    113 schema:publisher Pleiades Publishing
    114 rdf:type schema:Periodical
    115 sg:person.01015677454.25 schema:affiliation grid-institutes:grid.473785.a
    116 schema:familyName Vasil’ev
    117 schema:givenName R. F.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015677454.25
    119 rdf:type schema:Person
    120 sg:person.01267513037.50 schema:affiliation grid-institutes:grid.4886.2
    121 schema:familyName Rusina
    122 schema:givenName I. F.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267513037.50
    124 rdf:type schema:Person
    125 sg:person.0715557241.35 schema:affiliation grid-institutes:grid.473785.a
    126 schema:familyName Veprintsev
    127 schema:givenName T. L.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715557241.35
    129 rdf:type schema:Person
    130 sg:pub.10.1007/s10812-007-0103-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027513480
    131 https://doi.org/10.1007/s10812-007-0103-y
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s11176-005-0278-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012514342
    134 https://doi.org/10.1007/s11176-005-0278-y
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1134/s0023158410040087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016545900
    137 https://doi.org/10.1134/s0023158410040087
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1134/s0023158414020153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051486214
    140 https://doi.org/10.1134/s0023158414020153
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1134/s0036024420110308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132216879
    143 https://doi.org/10.1134/s0036024420110308
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1134/s1061933x11050073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050665860
    146 https://doi.org/10.1134/s1061933x11050073
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1134/s1990793113040192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023813574
    149 https://doi.org/10.1134/s1990793113040192
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1134/s1990793120030252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129785404
    152 https://doi.org/10.1134/s1990793120030252
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1134/s1990793120030264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129786471
    155 https://doi.org/10.1134/s1990793120030264
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1134/s1990793121010231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137439963
    158 https://doi.org/10.1134/s1990793121010231
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1134/s1990793121010243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137439964
    161 https://doi.org/10.1134/s1990793121010243
    162 rdf:type schema:CreativeWork
    163 grid-institutes:grid.473785.a schema:alternateName Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
    164 schema:name Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
    165 rdf:type schema:Organization
    166 grid-institutes:grid.4886.2 schema:alternateName Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
    167 schema:name Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
    168 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...