Convective burning of block charges prepared from seven-perforation propellant powder grains inhibited by polyvinyl butyral View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-05

AUTHORS

B. S. Ermolaev, A. A. Sulimov, A. V. Roman’kov, V. E. Khrapovskii, A. A. Belyaev, A. B. Crowley

ABSTRACT

The burning of block charges prepared from seven-perforation propellant powder grains inhibited with polyvinyl butyral is studied. The experiments are carried out in a constant-volume bomb, nozzle bomb with a post-combustion chamber, and a 23-mm laboratory gun device, setups that provide a wide range of combustion conditions. The progress of the combustion process and the motion of the projectile along the barrel are recorded using a set of piezoelectric sensors. The varied parameters are the amount of inhibitor, density of the monoblock (1.2–1.45 g/cm3), and the power of the igniter. The different combustion conditions achievable in the bomb and laboratory gun device enable to assess the impact of the pressure-rise rate on the rate of the convective burning of the block charge. Adjusting the properties of the latter makes it possible to vary the convective burning rate within 10–60 m/s, which is optimal for using the block charge for producing a shot. The results show that, when used in block charges, coarse seven-perforation propellant powders can provide, despite their own high burning progressivity, an equally high effect as the previously studied fine-grain propellant powders. At a given maximum pressure, the observed increase in the muzzle velocity for block charges exceed 12% as compared to a pour-density charge prepared from regular seven-perforation propellant powder. Based on numerical simulations, an analysis of the experimental data is performed and an explanation of the experimentally observed influence of the pressure rise rate on the convective burning rate of block charges is proposed. More... »

PAGES

375-384

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1990793115030045

DOI

http://dx.doi.org/10.1134/s1990793115030045

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006382508


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Semenov Institute of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.424930.8", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ermolaev", 
        "givenName": "B. S.", 
        "id": "sg:person.07735774373.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07735774373.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semenov Institute of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.424930.8", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sulimov", 
        "givenName": "A. A.", 
        "id": "sg:person.014250524173.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014250524173.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semenov Institute of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.424930.8", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roman\u2019kov", 
        "givenName": "A. V.", 
        "id": "sg:person.010376324475.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010376324475.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semenov Institute of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.424930.8", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khrapovskii", 
        "givenName": "V. E.", 
        "id": "sg:person.015561136150.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561136150.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semenov Institute of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.424930.8", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belyaev", 
        "givenName": "A. A.", 
        "id": "sg:person.07426151516.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07426151516.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cranfield University", 
          "id": "https://www.grid.ac/institutes/grid.12026.37", 
          "name": [
            "Cranfield University, Shrivenham, Swindon, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crowley", 
        "givenName": "A. B.", 
        "id": "sg:person.0612357530.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612357530.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/i160071a001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055525763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/4706-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068957161"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "The burning of block charges prepared from seven-perforation propellant powder grains inhibited with polyvinyl butyral is studied. The experiments are carried out in a constant-volume bomb, nozzle bomb with a post-combustion chamber, and a 23-mm laboratory gun device, setups that provide a wide range of combustion conditions. The progress of the combustion process and the motion of the projectile along the barrel are recorded using a set of piezoelectric sensors. The varied parameters are the amount of inhibitor, density of the monoblock (1.2\u20131.45 g/cm3), and the power of the igniter. The different combustion conditions achievable in the bomb and laboratory gun device enable to assess the impact of the pressure-rise rate on the rate of the convective burning of the block charge. Adjusting the properties of the latter makes it possible to vary the convective burning rate within 10\u201360 m/s, which is optimal for using the block charge for producing a shot. The results show that, when used in block charges, coarse seven-perforation propellant powders can provide, despite their own high burning progressivity, an equally high effect as the previously studied fine-grain propellant powders. At a given maximum pressure, the observed increase in the muzzle velocity for block charges exceed 12% as compared to a pour-density charge prepared from regular seven-perforation propellant powder. Based on numerical simulations, an analysis of the experimental data is performed and an explanation of the experimentally observed influence of the pressure rise rate on the convective burning rate of block charges is proposed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1990793115030045", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136550", 
        "issn": [
          "1990-7931", 
          "1990-7923"
        ], 
        "name": "Russian Journal of Physical Chemistry B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Convective burning of block charges prepared from seven-perforation propellant powder grains inhibited by polyvinyl butyral", 
    "pagination": "375-384", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e66e206dfe2757bdaddf175fdd3c1301db244035f0875e537f2731aa50c9531"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1990793115030045"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006382508"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1990793115030045", 
      "https://app.dimensions.ai/details/publication/pub.1006382508"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1990793115030045"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1990793115030045'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1990793115030045'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1990793115030045'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1990793115030045'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1990793115030045 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nd320d8d07c8a4a3fbabf07b4d5ed0a3e
4 schema:citation https://doi.org/10.1021/i160071a001
5 https://doi.org/10.2118/4706-pa
6 schema:datePublished 2015-05
7 schema:datePublishedReg 2015-05-01
8 schema:description The burning of block charges prepared from seven-perforation propellant powder grains inhibited with polyvinyl butyral is studied. The experiments are carried out in a constant-volume bomb, nozzle bomb with a post-combustion chamber, and a 23-mm laboratory gun device, setups that provide a wide range of combustion conditions. The progress of the combustion process and the motion of the projectile along the barrel are recorded using a set of piezoelectric sensors. The varied parameters are the amount of inhibitor, density of the monoblock (1.2–1.45 g/cm3), and the power of the igniter. The different combustion conditions achievable in the bomb and laboratory gun device enable to assess the impact of the pressure-rise rate on the rate of the convective burning of the block charge. Adjusting the properties of the latter makes it possible to vary the convective burning rate within 10–60 m/s, which is optimal for using the block charge for producing a shot. The results show that, when used in block charges, coarse seven-perforation propellant powders can provide, despite their own high burning progressivity, an equally high effect as the previously studied fine-grain propellant powders. At a given maximum pressure, the observed increase in the muzzle velocity for block charges exceed 12% as compared to a pour-density charge prepared from regular seven-perforation propellant powder. Based on numerical simulations, an analysis of the experimental data is performed and an explanation of the experimentally observed influence of the pressure rise rate on the convective burning rate of block charges is proposed.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nd537a81aaef2490a9fd1cec7c16d66d4
13 Ne24085608dc6446b89c24779dbecdefb
14 sg:journal.1136550
15 schema:name Convective burning of block charges prepared from seven-perforation propellant powder grains inhibited by polyvinyl butyral
16 schema:pagination 375-384
17 schema:productId N1b45456097444cfdb5ec8788f47f13dc
18 Nc512f4938fee41ccb0ac06035331ffcc
19 Nfbc0e61b198c4b05afb25508ff982f99
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006382508
21 https://doi.org/10.1134/s1990793115030045
22 schema:sdDatePublished 2019-04-10T15:06
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N64b60d5529ef4d0ab1eea15a935c86d9
25 schema:url http://link.springer.com/10.1134%2FS1990793115030045
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N1b45456097444cfdb5ec8788f47f13dc schema:name readcube_id
30 schema:value 1e66e206dfe2757bdaddf175fdd3c1301db244035f0875e537f2731aa50c9531
31 rdf:type schema:PropertyValue
32 N64b60d5529ef4d0ab1eea15a935c86d9 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N672d90d497d04d698555cb14555c3178 rdf:first sg:person.010376324475.44
35 rdf:rest Nc5ca2e75942647dc8a21e7ef64ee4d6c
36 N9311556e3df446e4aea5dda19f876ec4 rdf:first sg:person.07426151516.03
37 rdf:rest Nb7dd31e8a30c4a6faa7d827418a39afe
38 Nb7dd31e8a30c4a6faa7d827418a39afe rdf:first sg:person.0612357530.71
39 rdf:rest rdf:nil
40 Nc512f4938fee41ccb0ac06035331ffcc schema:name dimensions_id
41 schema:value pub.1006382508
42 rdf:type schema:PropertyValue
43 Nc5ca2e75942647dc8a21e7ef64ee4d6c rdf:first sg:person.015561136150.19
44 rdf:rest N9311556e3df446e4aea5dda19f876ec4
45 Nd320d8d07c8a4a3fbabf07b4d5ed0a3e rdf:first sg:person.07735774373.90
46 rdf:rest Ndc95aec56c7c434f8e8eebcdaafcf6fa
47 Nd537a81aaef2490a9fd1cec7c16d66d4 schema:volumeNumber 9
48 rdf:type schema:PublicationVolume
49 Ndc95aec56c7c434f8e8eebcdaafcf6fa rdf:first sg:person.014250524173.20
50 rdf:rest N672d90d497d04d698555cb14555c3178
51 Ne24085608dc6446b89c24779dbecdefb schema:issueNumber 3
52 rdf:type schema:PublicationIssue
53 Nfbc0e61b198c4b05afb25508ff982f99 schema:name doi
54 schema:value 10.1134/s1990793115030045
55 rdf:type schema:PropertyValue
56 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
57 schema:name Engineering
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
60 schema:name Interdisciplinary Engineering
61 rdf:type schema:DefinedTerm
62 sg:journal.1136550 schema:issn 1990-7923
63 1990-7931
64 schema:name Russian Journal of Physical Chemistry B
65 rdf:type schema:Periodical
66 sg:person.010376324475.44 schema:affiliation https://www.grid.ac/institutes/grid.424930.8
67 schema:familyName Roman’kov
68 schema:givenName A. V.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010376324475.44
70 rdf:type schema:Person
71 sg:person.014250524173.20 schema:affiliation https://www.grid.ac/institutes/grid.424930.8
72 schema:familyName Sulimov
73 schema:givenName A. A.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014250524173.20
75 rdf:type schema:Person
76 sg:person.015561136150.19 schema:affiliation https://www.grid.ac/institutes/grid.424930.8
77 schema:familyName Khrapovskii
78 schema:givenName V. E.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561136150.19
80 rdf:type schema:Person
81 sg:person.0612357530.71 schema:affiliation https://www.grid.ac/institutes/grid.12026.37
82 schema:familyName Crowley
83 schema:givenName A. B.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612357530.71
85 rdf:type schema:Person
86 sg:person.07426151516.03 schema:affiliation https://www.grid.ac/institutes/grid.424930.8
87 schema:familyName Belyaev
88 schema:givenName A. A.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07426151516.03
90 rdf:type schema:Person
91 sg:person.07735774373.90 schema:affiliation https://www.grid.ac/institutes/grid.424930.8
92 schema:familyName Ermolaev
93 schema:givenName B. S.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07735774373.90
95 rdf:type schema:Person
96 https://doi.org/10.1021/i160071a001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055525763
97 rdf:type schema:CreativeWork
98 https://doi.org/10.2118/4706-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068957161
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.12026.37 schema:alternateName Cranfield University
101 schema:name Cranfield University, Shrivenham, Swindon, UK
102 rdf:type schema:Organization
103 https://www.grid.ac/institutes/grid.424930.8 schema:alternateName Semenov Institute of Chemical Physics
104 schema:name Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...