Diffusion in a tube consisting of alternating wide and narrow sections View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-09

AUTHORS

A. E. Antipov, Yu. A. Makhnovskii, V. Yu. Zitserman, S. M. Aldoshin

ABSTRACT

The problem of the diffusion of particles in a tube consisting of identical units, each composed of a wide and narrow section is solved. With an approach based on reducing the problem to a one-dimensional, the statistics of times of particle transition between adjacent sections is determined, which is a detailed characteristic of the diffusion process. An expression for the effective diffusion coefficient Def, defining the slow-down of transport due to variations of the tube profile, is derived. It is shown that Def behaves monotonically with increasing length of both the narrow and wide sections. The predictions of analytical formulas are in good agreement with the results of computer simulation performed by the Brownian dynamics method. More... »

PAGES

752-759

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1990793114050030

DOI

http://dx.doi.org/10.1134/s1990793114050030

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031397165


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Antipov", 
        "givenName": "A. E.", 
        "id": "sg:person.014025050645.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014025050645.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makhnovskii", 
        "givenName": "Yu. A.", 
        "id": "sg:person.07617015705.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07617015705.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.435259.c", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zitserman", 
        "givenName": "V. Yu.", 
        "id": "sg:person.01277125467.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277125467.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418949.9", 
          "name": [
            "Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aldoshin", 
        "givenName": "S. M.", 
        "id": "sg:person.014353217357.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014353217357.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/225420a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008580609", 
          "https://doi.org/10.1038/225420a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-86414-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043636629", 
          "https://doi.org/10.1007/978-3-642-86414-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35102535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029665914", 
          "https://doi.org/10.1038/35102535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0036024406070223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034564187", 
          "https://doi.org/10.1134/s0036024406070223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1990793109020225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004383566", 
          "https://doi.org/10.1134/s1990793109020225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0036024408120121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004820090", 
          "https://doi.org/10.1134/s0036024408120121"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-09", 
    "datePublishedReg": "2014-09-01", 
    "description": "The problem of the diffusion of particles in a tube consisting of identical units, each composed of a wide and narrow section is solved. With an approach based on reducing the problem to a one-dimensional, the statistics of times of particle transition between adjacent sections is determined, which is a detailed characteristic of the diffusion process. An expression for the effective diffusion coefficient Def, defining the slow-down of transport due to variations of the tube profile, is derived. It is shown that Def behaves monotonically with increasing length of both the narrow and wide sections. The predictions of analytical formulas are in good agreement with the results of computer simulation performed by the Brownian dynamics method.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1990793114050030", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136550", 
        "issn": [
          "1990-7931", 
          "1990-7923"
        ], 
        "name": "Russian Journal of Physical Chemistry B", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "narrow section", 
      "tube profile", 
      "diffusion of particles", 
      "Brownian dynamics method", 
      "dynamics method", 
      "good agreement", 
      "diffusion process", 
      "computer simulations", 
      "analytical formula", 
      "particle transitions", 
      "diffusion", 
      "detailed characteristics", 
      "identical units", 
      "tube", 
      "simulations", 
      "particles", 
      "wide section", 
      "transport", 
      "sections", 
      "problem", 
      "prediction", 
      "characteristics", 
      "agreement", 
      "process", 
      "behaves", 
      "method", 
      "variation", 
      "results", 
      "length", 
      "statistics of time", 
      "formula", 
      "units", 
      "approach", 
      "transition", 
      "profile", 
      "time", 
      "DEF", 
      "adjacent sections", 
      "down", 
      "statistics", 
      "expression"
    ], 
    "name": "Diffusion in a tube consisting of alternating wide and narrow sections", 
    "pagination": "752-759", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031397165"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1990793114050030"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1990793114050030", 
      "https://app.dimensions.ai/details/publication/pub.1031397165"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_629.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1990793114050030"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1990793114050030'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1990793114050030'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1990793114050030'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1990793114050030'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      72 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1990793114050030 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3669faf7d26e447dab5551b6375271e0
4 schema:citation sg:pub.10.1007/978-3-642-86414-8
5 sg:pub.10.1038/225420a0
6 sg:pub.10.1038/35102535
7 sg:pub.10.1134/s0036024406070223
8 sg:pub.10.1134/s0036024408120121
9 sg:pub.10.1134/s1990793109020225
10 schema:datePublished 2014-09
11 schema:datePublishedReg 2014-09-01
12 schema:description The problem of the diffusion of particles in a tube consisting of identical units, each composed of a wide and narrow section is solved. With an approach based on reducing the problem to a one-dimensional, the statistics of times of particle transition between adjacent sections is determined, which is a detailed characteristic of the diffusion process. An expression for the effective diffusion coefficient Def, defining the slow-down of transport due to variations of the tube profile, is derived. It is shown that Def behaves monotonically with increasing length of both the narrow and wide sections. The predictions of analytical formulas are in good agreement with the results of computer simulation performed by the Brownian dynamics method.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf N661a3eecfe324cc1a8cb3e61aaf61eb7
16 N87a1e79f312e43fdbaffdde32d1b8fcd
17 sg:journal.1136550
18 schema:keywords Brownian dynamics method
19 DEF
20 adjacent sections
21 agreement
22 analytical formula
23 approach
24 behaves
25 characteristics
26 computer simulations
27 detailed characteristics
28 diffusion
29 diffusion of particles
30 diffusion process
31 down
32 dynamics method
33 expression
34 formula
35 good agreement
36 identical units
37 length
38 method
39 narrow section
40 particle transitions
41 particles
42 prediction
43 problem
44 process
45 profile
46 results
47 sections
48 simulations
49 statistics
50 statistics of time
51 time
52 transition
53 transport
54 tube
55 tube profile
56 units
57 variation
58 wide section
59 schema:name Diffusion in a tube consisting of alternating wide and narrow sections
60 schema:pagination 752-759
61 schema:productId N4aaca90603ee4e0b86978d3074fd9e41
62 Nd49bb557a4074aea8c7c08f4e750ca6d
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031397165
64 https://doi.org/10.1134/s1990793114050030
65 schema:sdDatePublished 2022-10-01T06:39
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N3d7644646fe84464bfde4e1c58e857ce
68 schema:url https://doi.org/10.1134/s1990793114050030
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N3669faf7d26e447dab5551b6375271e0 rdf:first sg:person.014025050645.81
73 rdf:rest N40ffc2a154d94bcd907c1ada2fbe80d9
74 N3d7644646fe84464bfde4e1c58e857ce schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N40ffc2a154d94bcd907c1ada2fbe80d9 rdf:first sg:person.07617015705.04
77 rdf:rest Nf0891ed54f5b475897bc8d9219076eab
78 N4aaca90603ee4e0b86978d3074fd9e41 schema:name doi
79 schema:value 10.1134/s1990793114050030
80 rdf:type schema:PropertyValue
81 N661a3eecfe324cc1a8cb3e61aaf61eb7 schema:volumeNumber 8
82 rdf:type schema:PublicationVolume
83 N87a1e79f312e43fdbaffdde32d1b8fcd schema:issueNumber 5
84 rdf:type schema:PublicationIssue
85 Nd49bb557a4074aea8c7c08f4e750ca6d schema:name dimensions_id
86 schema:value pub.1031397165
87 rdf:type schema:PropertyValue
88 Ne6beb9115849425d8f5fd435a8314ace rdf:first sg:person.014353217357.41
89 rdf:rest rdf:nil
90 Nf0891ed54f5b475897bc8d9219076eab rdf:first sg:person.01277125467.70
91 rdf:rest Ne6beb9115849425d8f5fd435a8314ace
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
96 schema:name Artificial Intelligence and Image Processing
97 rdf:type schema:DefinedTerm
98 sg:journal.1136550 schema:issn 1990-7923
99 1990-7931
100 schema:name Russian Journal of Physical Chemistry B
101 schema:publisher Pleiades Publishing
102 rdf:type schema:Periodical
103 sg:person.01277125467.70 schema:affiliation grid-institutes:grid.435259.c
104 schema:familyName Zitserman
105 schema:givenName V. Yu.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277125467.70
107 rdf:type schema:Person
108 sg:person.014025050645.81 schema:affiliation grid-institutes:grid.14476.30
109 schema:familyName Antipov
110 schema:givenName A. E.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014025050645.81
112 rdf:type schema:Person
113 sg:person.014353217357.41 schema:affiliation grid-institutes:grid.418949.9
114 schema:familyName Aldoshin
115 schema:givenName S. M.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014353217357.41
117 rdf:type schema:Person
118 sg:person.07617015705.04 schema:affiliation grid-institutes:grid.423490.8
119 schema:familyName Makhnovskii
120 schema:givenName Yu. A.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07617015705.04
122 rdf:type schema:Person
123 sg:pub.10.1007/978-3-642-86414-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043636629
124 https://doi.org/10.1007/978-3-642-86414-8
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/225420a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008580609
127 https://doi.org/10.1038/225420a0
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/35102535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029665914
130 https://doi.org/10.1038/35102535
131 rdf:type schema:CreativeWork
132 sg:pub.10.1134/s0036024406070223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034564187
133 https://doi.org/10.1134/s0036024406070223
134 rdf:type schema:CreativeWork
135 sg:pub.10.1134/s0036024408120121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004820090
136 https://doi.org/10.1134/s0036024408120121
137 rdf:type schema:CreativeWork
138 sg:pub.10.1134/s1990793109020225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004383566
139 https://doi.org/10.1134/s1990793109020225
140 rdf:type schema:CreativeWork
141 grid-institutes:grid.14476.30 schema:alternateName Moscow State University, Moscow, Russia
142 schema:name Moscow State University, Moscow, Russia
143 rdf:type schema:Organization
144 grid-institutes:grid.418949.9 schema:alternateName Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
145 schema:name Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
146 rdf:type schema:Organization
147 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
148 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
149 rdf:type schema:Organization
150 grid-institutes:grid.435259.c schema:alternateName Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
151 schema:name Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...