Gas-phase spontaneous ignition of hydrocarbons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-07

AUTHORS

A. A. Borisov, N. M. Rubtsov, G. I. Skachkov, K. Ya. Troshin

ABSTRACT

The ignition of hydrocarbons at low temperatures is experimentally studied in a rapid-mixture-injection static reactor. The ignition process was monitored using a high-speed color video camera. It was found that, at low temperatures, ignition starts in kernels, a feature also characteristic of methods for measuring the ignition delay time at high and medium temperatures (shock tube, rapid compression machine). Kernel-mode ignition is associated with gas-dynamic phenomena inherent in different techniques of heating the gas to the desired temperature. Ignition in the kernel is of chain-thermal nature. The emergence of a visible kernel can be considered the beginning of hot flame propagation. It is shown that, in the self-ignition mode, the propagation of the flame front from the initial kernel occurs by the induction mechanism, proposed by Ya.B. Zel’dovich, rather than by the diffusion-heat-conduction mechanism. Introduction of a platinum wire into the reactor produces a catalytic effect in the negative temperature coefficient region, while virtually unaffecting the ignition delay at lower temperatures. More... »

PAGES

517-522

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1990793112080040

DOI

http://dx.doi.org/10.1134/s1990793112080040

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024618472


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Semenov Institute of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.424930.8", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borisov", 
        "givenName": "A. A.", 
        "id": "sg:person.016337546241.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016337546241.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Structural Macrokinetics and Problems of Materials Science, Russian Academy of Sciences, Chernogolovla, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rubtsov", 
        "givenName": "N. M.", 
        "id": "sg:person.010546215173.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010546215173.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semenov Institute of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.424930.8", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skachkov", 
        "givenName": "G. I.", 
        "id": "sg:person.012332521626.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012332521626.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semenov Institute of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.424930.8", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Troshin", 
        "givenName": "K. Ya.", 
        "id": "sg:person.015655434623.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655434623.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/ie50504a046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055632226"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-07", 
    "datePublishedReg": "2012-07-01", 
    "description": "The ignition of hydrocarbons at low temperatures is experimentally studied in a rapid-mixture-injection static reactor. The ignition process was monitored using a high-speed color video camera. It was found that, at low temperatures, ignition starts in kernels, a feature also characteristic of methods for measuring the ignition delay time at high and medium temperatures (shock tube, rapid compression machine). Kernel-mode ignition is associated with gas-dynamic phenomena inherent in different techniques of heating the gas to the desired temperature. Ignition in the kernel is of chain-thermal nature. The emergence of a visible kernel can be considered the beginning of hot flame propagation. It is shown that, in the self-ignition mode, the propagation of the flame front from the initial kernel occurs by the induction mechanism, proposed by Ya.B. Zel\u2019dovich, rather than by the diffusion-heat-conduction mechanism. Introduction of a platinum wire into the reactor produces a catalytic effect in the negative temperature coefficient region, while virtually unaffecting the ignition delay at lower temperatures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1990793112080040", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136550", 
        "issn": [
          "1990-7931", 
          "1990-7923"
        ], 
        "name": "Russian Journal of Physical Chemistry B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Gas-phase spontaneous ignition of hydrocarbons", 
    "pagination": "517-522", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "75487e9aa5ecd39f0111df2e91b5ff78affb0f92549e6625c2468e56da181ab0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1990793112080040"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024618472"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1990793112080040", 
      "https://app.dimensions.ai/details/publication/pub.1024618472"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1990793112080040"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1990793112080040'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1990793112080040'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1990793112080040'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1990793112080040'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1990793112080040 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N25fcf50a74d04315b86955a9dbb92991
4 schema:citation https://doi.org/10.1021/ie50504a046
5 schema:datePublished 2012-07
6 schema:datePublishedReg 2012-07-01
7 schema:description The ignition of hydrocarbons at low temperatures is experimentally studied in a rapid-mixture-injection static reactor. The ignition process was monitored using a high-speed color video camera. It was found that, at low temperatures, ignition starts in kernels, a feature also characteristic of methods for measuring the ignition delay time at high and medium temperatures (shock tube, rapid compression machine). Kernel-mode ignition is associated with gas-dynamic phenomena inherent in different techniques of heating the gas to the desired temperature. Ignition in the kernel is of chain-thermal nature. The emergence of a visible kernel can be considered the beginning of hot flame propagation. It is shown that, in the self-ignition mode, the propagation of the flame front from the initial kernel occurs by the induction mechanism, proposed by Ya.B. Zel’dovich, rather than by the diffusion-heat-conduction mechanism. Introduction of a platinum wire into the reactor produces a catalytic effect in the negative temperature coefficient region, while virtually unaffecting the ignition delay at lower temperatures.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N06908ca933954dc283aa385fce772c89
12 N9e7ffa52d19b47f4a378769b1036e238
13 sg:journal.1136550
14 schema:name Gas-phase spontaneous ignition of hydrocarbons
15 schema:pagination 517-522
16 schema:productId N3c8575462fc14e3897388ee86c67222d
17 Nb446f95a98f04f92b19d8984778585e3
18 Nb84f7a3847b54974a3fd852208245cfd
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024618472
20 https://doi.org/10.1134/s1990793112080040
21 schema:sdDatePublished 2019-04-11T01:12
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N8047cc8fedc148c28dc009e1b951f7f4
24 schema:url http://link.springer.com/10.1134%2FS1990793112080040
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N06908ca933954dc283aa385fce772c89 schema:volumeNumber 6
29 rdf:type schema:PublicationVolume
30 N25fcf50a74d04315b86955a9dbb92991 rdf:first sg:person.016337546241.90
31 rdf:rest N510eb6cbcf0a4c2a8938631435bd1f4b
32 N27a6cc3e8f9d4a7ab8555bd97e9c815f rdf:first sg:person.012332521626.60
33 rdf:rest Nc02c4a66140b4e94812c657284a956d7
34 N3c8575462fc14e3897388ee86c67222d schema:name readcube_id
35 schema:value 75487e9aa5ecd39f0111df2e91b5ff78affb0f92549e6625c2468e56da181ab0
36 rdf:type schema:PropertyValue
37 N510eb6cbcf0a4c2a8938631435bd1f4b rdf:first sg:person.010546215173.04
38 rdf:rest N27a6cc3e8f9d4a7ab8555bd97e9c815f
39 N8047cc8fedc148c28dc009e1b951f7f4 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N9e7ffa52d19b47f4a378769b1036e238 schema:issueNumber 4
42 rdf:type schema:PublicationIssue
43 Nb446f95a98f04f92b19d8984778585e3 schema:name dimensions_id
44 schema:value pub.1024618472
45 rdf:type schema:PropertyValue
46 Nb84f7a3847b54974a3fd852208245cfd schema:name doi
47 schema:value 10.1134/s1990793112080040
48 rdf:type schema:PropertyValue
49 Nc02c4a66140b4e94812c657284a956d7 rdf:first sg:person.015655434623.18
50 rdf:rest rdf:nil
51 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
52 schema:name Information and Computing Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
55 schema:name Artificial Intelligence and Image Processing
56 rdf:type schema:DefinedTerm
57 sg:journal.1136550 schema:issn 1990-7923
58 1990-7931
59 schema:name Russian Journal of Physical Chemistry B
60 rdf:type schema:Periodical
61 sg:person.010546215173.04 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
62 schema:familyName Rubtsov
63 schema:givenName N. M.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010546215173.04
65 rdf:type schema:Person
66 sg:person.012332521626.60 schema:affiliation https://www.grid.ac/institutes/grid.424930.8
67 schema:familyName Skachkov
68 schema:givenName G. I.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012332521626.60
70 rdf:type schema:Person
71 sg:person.015655434623.18 schema:affiliation https://www.grid.ac/institutes/grid.424930.8
72 schema:familyName Troshin
73 schema:givenName K. Ya.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655434623.18
75 rdf:type schema:Person
76 sg:person.016337546241.90 schema:affiliation https://www.grid.ac/institutes/grid.424930.8
77 schema:familyName Borisov
78 schema:givenName A. A.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016337546241.90
80 rdf:type schema:Person
81 https://doi.org/10.1021/ie50504a046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055632226
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.424930.8 schema:alternateName Semenov Institute of Chemical Physics
84 schema:name Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
85 rdf:type schema:Organization
86 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
87 schema:name Institute of Structural Macrokinetics and Problems of Materials Science, Russian Academy of Sciences, Chernogolovla, Moscow oblast, Russia
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...