Mechanisms of the oxidation of defect-free surfaces of carbon nanostructures: the influence of surface curvature View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-02

AUTHORS

I. A. Valuev, G. E. Norman, B. R. Shub

ABSTRACT

This work is concerned with reaction paths in the interaction of carbon defect-free nanostructures with different surface curvatures (graphene, tubulenes, and fullerene C60) with atomic and molecular oxygen. The interaction energies of atoms were calculated by the density functional theory method using the basis set of plane waves and the VASP package. The potential surface of reactions with molecular oxygen was studied by the nudged elastic band method. The energy parameters of the reaction (released energy and barrier) strongly depended on the curvature of carbon structure surfaces. The interaction of atomic oxygen in the ground state with the surface of carbon nanostructures is an exothermic reaction. The barrier to the reaction with molecular oxygen (0.5–2.5 eV) decreases as the curvature of nanostructure surfaces increases. The calculation results are in agreement with the experimental data and other ab initio calculations. More... »

PAGES

156

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1990793111010131

DOI

http://dx.doi.org/10.1134/s1990793111010131

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008389131


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of High Temperatures Scientific Association (IVTAN), Russian Academy of Sciences, Izhorskaya ul. 13/19, 127412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valuev", 
        "givenName": "I. A.", 
        "id": "sg:person.0611147461.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611147461.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of High Temperatures Scientific Association (IVTAN), Russian Academy of Sciences, Izhorskaya ul. 13/19, 127412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Norman", 
        "givenName": "G. E.", 
        "id": "sg:person.011662445071.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011662445071.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shub", 
        "givenName": "B. R.", 
        "id": "sg:person.015254244563.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015254244563.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0039-6028(03)00104-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006852410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2004.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010463342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2004.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012761384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-2180(01)00263-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013205149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.10309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024968640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmgm.2008.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037548327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00029a058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055700420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0025651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055718043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0025651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055718043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp010572l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056045751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp010572l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056045751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0144294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056048399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0144294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056048399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1323224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057694620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1536636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057717672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.115435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.115435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.3487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.3487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819097"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-02", 
    "datePublishedReg": "2011-02-01", 
    "description": "This work is concerned with reaction paths in the interaction of carbon defect-free nanostructures with different surface curvatures (graphene, tubulenes, and fullerene C60) with atomic and molecular oxygen. The interaction energies of atoms were calculated by the density functional theory method using the basis set of plane waves and the VASP package. The potential surface of reactions with molecular oxygen was studied by the nudged elastic band method. The energy parameters of the reaction (released energy and barrier) strongly depended on the curvature of carbon structure surfaces. The interaction of atomic oxygen in the ground state with the surface of carbon nanostructures is an exothermic reaction. The barrier to the reaction with molecular oxygen (0.5\u20132.5 eV) decreases as the curvature of nanostructure surfaces increases. The calculation results are in agreement with the experimental data and other ab initio calculations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1990793111010131", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136550", 
        "issn": [
          "1990-7931", 
          "1990-7923"
        ], 
        "name": "Russian Journal of Physical Chemistry B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Mechanisms of the oxidation of defect-free surfaces of carbon nanostructures: the influence of surface curvature", 
    "pagination": "156", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "27f72b92792b1ac399d02df3dc4e2cb14046a4ade04e3fa07a1d7c971ecd168e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1990793111010131"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008389131"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1990793111010131", 
      "https://app.dimensions.ai/details/publication/pub.1008389131"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1990793111010131"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1990793111010131'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1990793111010131'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1990793111010131'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1990793111010131'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1990793111010131 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N7083a13f7a0147e0ae82152733b5d86b
4 schema:citation https://doi.org/10.1002/jcc.10309
5 https://doi.org/10.1016/j.carbon.2004.07.002
6 https://doi.org/10.1016/j.cplett.2004.11.010
7 https://doi.org/10.1016/j.jmgm.2008.03.006
8 https://doi.org/10.1016/s0010-2180(01)00263-2
9 https://doi.org/10.1016/s0039-6028(03)00104-3
10 https://doi.org/10.1021/ja00029a058
11 https://doi.org/10.1021/ja0025651
12 https://doi.org/10.1021/jp010572l
13 https://doi.org/10.1021/jp0144294
14 https://doi.org/10.1063/1.1323224
15 https://doi.org/10.1063/1.1536636
16 https://doi.org/10.1103/physrevb.59.1758
17 https://doi.org/10.1103/physrevb.68.115435
18 https://doi.org/10.1103/physrevlett.67.3487
19 https://doi.org/10.1103/physrevlett.82.217
20 schema:datePublished 2011-02
21 schema:datePublishedReg 2011-02-01
22 schema:description This work is concerned with reaction paths in the interaction of carbon defect-free nanostructures with different surface curvatures (graphene, tubulenes, and fullerene C60) with atomic and molecular oxygen. The interaction energies of atoms were calculated by the density functional theory method using the basis set of plane waves and the VASP package. The potential surface of reactions with molecular oxygen was studied by the nudged elastic band method. The energy parameters of the reaction (released energy and barrier) strongly depended on the curvature of carbon structure surfaces. The interaction of atomic oxygen in the ground state with the surface of carbon nanostructures is an exothermic reaction. The barrier to the reaction with molecular oxygen (0.5–2.5 eV) decreases as the curvature of nanostructure surfaces increases. The calculation results are in agreement with the experimental data and other ab initio calculations.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N4522ac380220493586df72b79a8fd9aa
27 Naebe22de9a434a4b8e122db3077135d3
28 sg:journal.1136550
29 schema:name Mechanisms of the oxidation of defect-free surfaces of carbon nanostructures: the influence of surface curvature
30 schema:pagination 156
31 schema:productId N32cc839e88e84764a8cc9b58b4372450
32 N69a262c942284ce985d6109e76359b73
33 Nff0aea6af88d4eec9db9887945ec826a
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008389131
35 https://doi.org/10.1134/s1990793111010131
36 schema:sdDatePublished 2019-04-10T15:06
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N2685e9348e504bfab5daa00ac372f983
39 schema:url http://link.springer.com/10.1134%2FS1990793111010131
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N1351936380f24d39a2e8445b91182751 rdf:first sg:person.015254244563.43
44 rdf:rest rdf:nil
45 N1600e5f389834d61b553aa9a08f6431e rdf:first sg:person.011662445071.72
46 rdf:rest N1351936380f24d39a2e8445b91182751
47 N2685e9348e504bfab5daa00ac372f983 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N32cc839e88e84764a8cc9b58b4372450 schema:name doi
50 schema:value 10.1134/s1990793111010131
51 rdf:type schema:PropertyValue
52 N4522ac380220493586df72b79a8fd9aa schema:volumeNumber 5
53 rdf:type schema:PublicationVolume
54 N69a262c942284ce985d6109e76359b73 schema:name dimensions_id
55 schema:value pub.1008389131
56 rdf:type schema:PropertyValue
57 N7083a13f7a0147e0ae82152733b5d86b rdf:first sg:person.0611147461.16
58 rdf:rest N1600e5f389834d61b553aa9a08f6431e
59 Naebe22de9a434a4b8e122db3077135d3 schema:issueNumber 1
60 rdf:type schema:PublicationIssue
61 Nff0aea6af88d4eec9db9887945ec826a schema:name readcube_id
62 schema:value 27f72b92792b1ac399d02df3dc4e2cb14046a4ade04e3fa07a1d7c971ecd168e
63 rdf:type schema:PropertyValue
64 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
65 schema:name Chemical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
68 schema:name Physical Chemistry (incl. Structural)
69 rdf:type schema:DefinedTerm
70 sg:journal.1136550 schema:issn 1990-7923
71 1990-7931
72 schema:name Russian Journal of Physical Chemistry B
73 rdf:type schema:Periodical
74 sg:person.011662445071.72 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
75 schema:familyName Norman
76 schema:givenName G. E.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011662445071.72
78 rdf:type schema:Person
79 sg:person.015254244563.43 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
80 schema:familyName Shub
81 schema:givenName B. R.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015254244563.43
83 rdf:type schema:Person
84 sg:person.0611147461.16 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
85 schema:familyName Valuev
86 schema:givenName I. A.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611147461.16
88 rdf:type schema:Person
89 https://doi.org/10.1002/jcc.10309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024968640
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.carbon.2004.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012761384
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.cplett.2004.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010463342
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.jmgm.2008.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037548327
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/s0010-2180(01)00263-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013205149
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s0039-6028(03)00104-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006852410
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1021/ja00029a058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055700420
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1021/ja0025651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055718043
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1021/jp010572l schema:sameAs https://app.dimensions.ai/details/publication/pub.1056045751
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1021/jp0144294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056048399
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1063/1.1323224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057694620
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1063/1.1536636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057717672
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevb.68.115435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060607551
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.67.3487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803722
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevlett.82.217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819097
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
122 schema:name Institute of High Temperatures Scientific Association (IVTAN), Russian Academy of Sciences, Izhorskaya ul. 13/19, 127412, Moscow, Russia
123 Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow, Russia
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...