Method for estimating the acceleration ability of aluminized high explosives View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-08

AUTHORS

M. N. Makhov, V. I. Arkhipov

ABSTRACT

A semiempirical method for calculating the acceleration ability of aluminized high explosives was developed using experimental data. The method is based on the assumption that the coefficient of transformation of chemical energy into the kinetic energy of the flyer depends on the number of moles of gaseous detonation products. The model takes into account the effective extent of oxidation of aluminum at various stages of motion of the flyer. Calculations were performed for compositions containing a number of new explosives. The calculation results show that nanostructured aluminized composite can be superior to mechanical mixture in acceleration ability if the main explosive has a highly negative oxygen balance or contains and enhanced amount of hydrogen. More... »

PAGES

602-608

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1990793108040167

DOI

http://dx.doi.org/10.1134/s1990793108040167

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107212203


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makhov", 
        "givenName": "M. N.", 
        "id": "sg:person.014542320205.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014542320205.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arkhipov", 
        "givenName": "V. I.", 
        "id": "sg:person.012467644774.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012467644774.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0010-2180(81)90009-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020703752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-2180(77)90007-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022660128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-2180(77)90007-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022660128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-2180(83)90110-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039098205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-2180(83)90110-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039098205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prep.19970220502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048529025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prep.19970220502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048529025"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-08", 
    "datePublishedReg": "2008-08-01", 
    "description": "A semiempirical method for calculating the acceleration ability of aluminized high explosives was developed using experimental data. The method is based on the assumption that the coefficient of transformation of chemical energy into the kinetic energy of the flyer depends on the number of moles of gaseous detonation products. The model takes into account the effective extent of oxidation of aluminum at various stages of motion of the flyer. Calculations were performed for compositions containing a number of new explosives. The calculation results show that nanostructured aluminized composite can be superior to mechanical mixture in acceleration ability if the main explosive has a highly negative oxygen balance or contains and enhanced amount of hydrogen.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1990793108040167", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136550", 
        "issn": [
          "1990-7931", 
          "1990-7923"
        ], 
        "name": "Russian Journal of Physical Chemistry B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Method for estimating the acceleration ability of aluminized high explosives", 
    "pagination": "602-608", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7767d5c1cd7b0bb5b229934e01629db7d6307b27e9a4674ed3fff9461008f261"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1990793108040167"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107212203"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1990793108040167", 
      "https://app.dimensions.ai/details/publication/pub.1107212203"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000539.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1990793108040167"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1990793108040167'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1990793108040167'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1990793108040167'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1990793108040167'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1990793108040167 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb5d03d537f544a46812ba5cb4a22ff35
4 schema:citation https://doi.org/10.1002/prep.19970220502
5 https://doi.org/10.1016/0010-2180(77)90007-4
6 https://doi.org/10.1016/0010-2180(81)90009-2
7 https://doi.org/10.1016/0010-2180(83)90110-4
8 schema:datePublished 2008-08
9 schema:datePublishedReg 2008-08-01
10 schema:description A semiempirical method for calculating the acceleration ability of aluminized high explosives was developed using experimental data. The method is based on the assumption that the coefficient of transformation of chemical energy into the kinetic energy of the flyer depends on the number of moles of gaseous detonation products. The model takes into account the effective extent of oxidation of aluminum at various stages of motion of the flyer. Calculations were performed for compositions containing a number of new explosives. The calculation results show that nanostructured aluminized composite can be superior to mechanical mixture in acceleration ability if the main explosive has a highly negative oxygen balance or contains and enhanced amount of hydrogen.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N5f92a8dc4f7d41d08440a5a3f77496fe
15 Nf82f8bbe37f64cd0a49047d9e00ae916
16 sg:journal.1136550
17 schema:name Method for estimating the acceleration ability of aluminized high explosives
18 schema:pagination 602-608
19 schema:productId N248dff5ba24f45a79dab486e775ffd59
20 Nc0fdca01c4094ec0891b9a0d31f8d4fe
21 Nf0b79a9a462f43a8825bbb710146140b
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107212203
23 https://doi.org/10.1134/s1990793108040167
24 schema:sdDatePublished 2019-04-11T00:21
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nc84c2a0644e64fdcb81f6ee5cdb2f0a1
27 schema:url https://link.springer.com/10.1134%2FS1990793108040167
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N248dff5ba24f45a79dab486e775ffd59 schema:name readcube_id
32 schema:value 7767d5c1cd7b0bb5b229934e01629db7d6307b27e9a4674ed3fff9461008f261
33 rdf:type schema:PropertyValue
34 N5f92a8dc4f7d41d08440a5a3f77496fe schema:volumeNumber 2
35 rdf:type schema:PublicationVolume
36 N95d717b35fab493e972d68c437aa4512 rdf:first sg:person.012467644774.42
37 rdf:rest rdf:nil
38 Nb5d03d537f544a46812ba5cb4a22ff35 rdf:first sg:person.014542320205.28
39 rdf:rest N95d717b35fab493e972d68c437aa4512
40 Nc0fdca01c4094ec0891b9a0d31f8d4fe schema:name dimensions_id
41 schema:value pub.1107212203
42 rdf:type schema:PropertyValue
43 Nc84c2a0644e64fdcb81f6ee5cdb2f0a1 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Nf0b79a9a462f43a8825bbb710146140b schema:name doi
46 schema:value 10.1134/s1990793108040167
47 rdf:type schema:PropertyValue
48 Nf82f8bbe37f64cd0a49047d9e00ae916 schema:issueNumber 4
49 rdf:type schema:PublicationIssue
50 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
51 schema:name Chemical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
54 schema:name Physical Chemistry (incl. Structural)
55 rdf:type schema:DefinedTerm
56 sg:journal.1136550 schema:issn 1990-7923
57 1990-7931
58 schema:name Russian Journal of Physical Chemistry B
59 rdf:type schema:Periodical
60 sg:person.012467644774.42 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
61 schema:familyName Arkhipov
62 schema:givenName V. I.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012467644774.42
64 rdf:type schema:Person
65 sg:person.014542320205.28 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
66 schema:familyName Makhov
67 schema:givenName M. N.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014542320205.28
69 rdf:type schema:Person
70 https://doi.org/10.1002/prep.19970220502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048529025
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1016/0010-2180(77)90007-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022660128
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1016/0010-2180(81)90009-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020703752
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/0010-2180(83)90110-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039098205
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
79 schema:name Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...