Anomalous heat capacity of nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-02

AUTHORS

V. N. Likhachev, T. Yu. Astakhova, G. A. Vinogradov, M. I. Alymov

ABSTRACT

It was shown experimentally that the specific heat of nanosized particles was higher than that of macroscopic particles of the same nature. It was also found that the heat capacity increased as the size of nanoparticles decreased. We analyzed the reasons for the anomalous behavior of the heat capacity of nanoparticles. For this purpose, we considered nanoparticles with a simple cubic lattice and an arbitrary external geometric shape. The simplest harmonic interaction potential between the nearest neighbor particles was used. Qualitative agreement with experimental data was obtained. The main factor responsible for the anomalous behavior of small particles was phonon spectrum softening compared with bulk material when free boundary conditions were used. The lower frequencies make a larger contribution to heat capacity. It was found that, apart from particle size, the geometric shape and defect structure of nanoparticles influenced their heat capacity: given the same number of particles, an increase in asymmetry and disorder caused an increase in heat capacity. More... »

PAGES

74-78

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1990793107010083

DOI

http://dx.doi.org/10.1134/s1990793107010083

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046419675


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Biochemical Physics NM Emanuel", 
          "id": "https://www.grid.ac/institutes/grid.473785.a", 
          "name": [
            "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Likhachev", 
        "givenName": "V. N.", 
        "id": "sg:person.011250016500.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011250016500.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biochemical Physics NM Emanuel", 
          "id": "https://www.grid.ac/institutes/grid.473785.a", 
          "name": [
            "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astakhova", 
        "givenName": "T. Yu.", 
        "id": "sg:person.07707571607.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07707571607.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biochemical Physics NM Emanuel", 
          "id": "https://www.grid.ac/institutes/grid.473785.a", 
          "name": [
            "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vinogradov", 
        "givenName": "G. A.", 
        "id": "sg:person.012311460725.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012311460725.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Baikov Institute of Metallurgy and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.423921.f", 
          "name": [
            "Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alymov", 
        "givenName": "M. I.", 
        "id": "sg:person.015657347013.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015657347013.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0042-207x(02)00291-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002321385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012514216429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005663279", 
          "https://doi.org/10.1023/a:1012514216429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1675906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005976067", 
          "https://doi.org/10.1134/1.1675906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1631-0705(02)01324-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006089344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(95)00038-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006340091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-3093(01)00902-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009878656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1560/vc0e-9ad7-0duk-nx66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010414503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b312640b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014064766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/25/5/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026639905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19073281003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027310633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19093330402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043374472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839598"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-02", 
    "datePublishedReg": "2007-02-01", 
    "description": "It was shown experimentally that the specific heat of nanosized particles was higher than that of macroscopic particles of the same nature. It was also found that the heat capacity increased as the size of nanoparticles decreased. We analyzed the reasons for the anomalous behavior of the heat capacity of nanoparticles. For this purpose, we considered nanoparticles with a simple cubic lattice and an arbitrary external geometric shape. The simplest harmonic interaction potential between the nearest neighbor particles was used. Qualitative agreement with experimental data was obtained. The main factor responsible for the anomalous behavior of small particles was phonon spectrum softening compared with bulk material when free boundary conditions were used. The lower frequencies make a larger contribution to heat capacity. It was found that, apart from particle size, the geometric shape and defect structure of nanoparticles influenced their heat capacity: given the same number of particles, an increase in asymmetry and disorder caused an increase in heat capacity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1990793107010083", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136550", 
        "issn": [
          "1990-7931", 
          "1990-7923"
        ], 
        "name": "Russian Journal of Physical Chemistry B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Anomalous heat capacity of nanoparticles", 
    "pagination": "74-78", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dd1f4ec4630e70ab4afca1cb477f57f5a2fba34751f61386dd38988bfc80a035"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1990793107010083"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046419675"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1990793107010083", 
      "https://app.dimensions.ai/details/publication/pub.1046419675"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71683_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1990793107010083"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1990793107010083'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1990793107010083'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1990793107010083'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1990793107010083'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1990793107010083 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb38ff9602e334c1b94a8cbd1c8f73317
4 schema:citation sg:pub.10.1023/a:1012514216429
5 sg:pub.10.1134/1.1675906
6 https://doi.org/10.1002/andp.19073281003
7 https://doi.org/10.1002/andp.19093330402
8 https://doi.org/10.1016/0038-1098(95)00038-0
9 https://doi.org/10.1016/s0022-3093(01)00902-4
10 https://doi.org/10.1016/s0042-207x(02)00291-9
11 https://doi.org/10.1016/s1631-0705(02)01324-5
12 https://doi.org/10.1039/b312640b
13 https://doi.org/10.1088/0022-3727/25/5/010
14 https://doi.org/10.1103/revmodphys.77.371
15 https://doi.org/10.1560/vc0e-9ad7-0duk-nx66
16 schema:datePublished 2007-02
17 schema:datePublishedReg 2007-02-01
18 schema:description It was shown experimentally that the specific heat of nanosized particles was higher than that of macroscopic particles of the same nature. It was also found that the heat capacity increased as the size of nanoparticles decreased. We analyzed the reasons for the anomalous behavior of the heat capacity of nanoparticles. For this purpose, we considered nanoparticles with a simple cubic lattice and an arbitrary external geometric shape. The simplest harmonic interaction potential between the nearest neighbor particles was used. Qualitative agreement with experimental data was obtained. The main factor responsible for the anomalous behavior of small particles was phonon spectrum softening compared with bulk material when free boundary conditions were used. The lower frequencies make a larger contribution to heat capacity. It was found that, apart from particle size, the geometric shape and defect structure of nanoparticles influenced their heat capacity: given the same number of particles, an increase in asymmetry and disorder caused an increase in heat capacity.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N01e2cbed21c249f184e4eaf75f6d0d04
23 N5a9f9187bf8343c99666cf7b25d6561a
24 sg:journal.1136550
25 schema:name Anomalous heat capacity of nanoparticles
26 schema:pagination 74-78
27 schema:productId N1f2e56ccc1a341539f114d3220f7410d
28 N92e0f14d285d4d4c8f204c3ed336ccfa
29 Nc864cf81d4b94659a1a934b0012ca296
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046419675
31 https://doi.org/10.1134/s1990793107010083
32 schema:sdDatePublished 2019-04-11T12:58
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N3dbadd11a1f045e88ee5a4dbe5d28beb
35 schema:url http://link.springer.com/10.1134%2FS1990793107010083
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N01e2cbed21c249f184e4eaf75f6d0d04 schema:issueNumber 1
40 rdf:type schema:PublicationIssue
41 N027e7a75a4ca4b7ea7652620c93d5bad rdf:first sg:person.012311460725.02
42 rdf:rest N57b1b06464104cfa8c1f31d42c0b3f71
43 N1f2e56ccc1a341539f114d3220f7410d schema:name readcube_id
44 schema:value dd1f4ec4630e70ab4afca1cb477f57f5a2fba34751f61386dd38988bfc80a035
45 rdf:type schema:PropertyValue
46 N3dbadd11a1f045e88ee5a4dbe5d28beb schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N57b1b06464104cfa8c1f31d42c0b3f71 rdf:first sg:person.015657347013.51
49 rdf:rest rdf:nil
50 N5a9f9187bf8343c99666cf7b25d6561a schema:volumeNumber 1
51 rdf:type schema:PublicationVolume
52 N92e0f14d285d4d4c8f204c3ed336ccfa schema:name dimensions_id
53 schema:value pub.1046419675
54 rdf:type schema:PropertyValue
55 Nb38ff9602e334c1b94a8cbd1c8f73317 rdf:first sg:person.011250016500.35
56 rdf:rest Nc8cba4bbae6b4872be74f8aa2ee62e2f
57 Nc864cf81d4b94659a1a934b0012ca296 schema:name doi
58 schema:value 10.1134/s1990793107010083
59 rdf:type schema:PropertyValue
60 Nc8cba4bbae6b4872be74f8aa2ee62e2f rdf:first sg:person.07707571607.38
61 rdf:rest N027e7a75a4ca4b7ea7652620c93d5bad
62 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
63 schema:name Chemical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
66 schema:name Physical Chemistry (incl. Structural)
67 rdf:type schema:DefinedTerm
68 sg:journal.1136550 schema:issn 1990-7923
69 1990-7931
70 schema:name Russian Journal of Physical Chemistry B
71 rdf:type schema:Periodical
72 sg:person.011250016500.35 schema:affiliation https://www.grid.ac/institutes/grid.473785.a
73 schema:familyName Likhachev
74 schema:givenName V. N.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011250016500.35
76 rdf:type schema:Person
77 sg:person.012311460725.02 schema:affiliation https://www.grid.ac/institutes/grid.473785.a
78 schema:familyName Vinogradov
79 schema:givenName G. A.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012311460725.02
81 rdf:type schema:Person
82 sg:person.015657347013.51 schema:affiliation https://www.grid.ac/institutes/grid.423921.f
83 schema:familyName Alymov
84 schema:givenName M. I.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015657347013.51
86 rdf:type schema:Person
87 sg:person.07707571607.38 schema:affiliation https://www.grid.ac/institutes/grid.473785.a
88 schema:familyName Astakhova
89 schema:givenName T. Yu.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07707571607.38
91 rdf:type schema:Person
92 sg:pub.10.1023/a:1012514216429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005663279
93 https://doi.org/10.1023/a:1012514216429
94 rdf:type schema:CreativeWork
95 sg:pub.10.1134/1.1675906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005976067
96 https://doi.org/10.1134/1.1675906
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/andp.19073281003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027310633
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/andp.19093330402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043374472
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0038-1098(95)00038-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006340091
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0022-3093(01)00902-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009878656
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0042-207x(02)00291-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002321385
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s1631-0705(02)01324-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006089344
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1039/b312640b schema:sameAs https://app.dimensions.ai/details/publication/pub.1014064766
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1088/0022-3727/25/5/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026639905
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/revmodphys.77.371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839598
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1560/vc0e-9ad7-0duk-nx66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010414503
117 rdf:type schema:CreativeWork
118 https://www.grid.ac/institutes/grid.423921.f schema:alternateName Baikov Institute of Metallurgy and Materials Science
119 schema:name Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
120 rdf:type schema:Organization
121 https://www.grid.ac/institutes/grid.473785.a schema:alternateName Institute of Biochemical Physics NM Emanuel
122 schema:name Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...