Anomalous heat capacity of nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-02

AUTHORS

V. N. Likhachev, T. Yu. Astakhova, G. A. Vinogradov, M. I. Alymov

ABSTRACT

It was shown experimentally that the specific heat of nanosized particles was higher than that of macroscopic particles of the same nature. It was also found that the heat capacity increased as the size of nanoparticles decreased. We analyzed the reasons for the anomalous behavior of the heat capacity of nanoparticles. For this purpose, we considered nanoparticles with a simple cubic lattice and an arbitrary external geometric shape. The simplest harmonic interaction potential between the nearest neighbor particles was used. Qualitative agreement with experimental data was obtained. The main factor responsible for the anomalous behavior of small particles was phonon spectrum softening compared with bulk material when free boundary conditions were used. The lower frequencies make a larger contribution to heat capacity. It was found that, apart from particle size, the geometric shape and defect structure of nanoparticles influenced their heat capacity: given the same number of particles, an increase in asymmetry and disorder caused an increase in heat capacity. More... »

PAGES

74-78

References to SciGraph publications

  • 2001-12. Enhancement of Molar Heat Capacity of Nanostructured Al2O3 in JOURNAL OF NANOPARTICLE RESEARCH
  • 2004-02. Heat capacity of isolated clusters in JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1990793107010083

    DOI

    http://dx.doi.org/10.1134/s1990793107010083

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046419675


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Biochemical Physics NM Emanuel", 
              "id": "https://www.grid.ac/institutes/grid.473785.a", 
              "name": [
                "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Likhachev", 
            "givenName": "V. N.", 
            "id": "sg:person.011250016500.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011250016500.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biochemical Physics NM Emanuel", 
              "id": "https://www.grid.ac/institutes/grid.473785.a", 
              "name": [
                "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Astakhova", 
            "givenName": "T. Yu.", 
            "id": "sg:person.07707571607.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07707571607.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biochemical Physics NM Emanuel", 
              "id": "https://www.grid.ac/institutes/grid.473785.a", 
              "name": [
                "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vinogradov", 
            "givenName": "G. A.", 
            "id": "sg:person.012311460725.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012311460725.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Baikov Institute of Metallurgy and Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.423921.f", 
              "name": [
                "Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alymov", 
            "givenName": "M. I.", 
            "id": "sg:person.015657347013.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015657347013.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0042-207x(02)00291-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002321385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012514216429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005663279", 
              "https://doi.org/10.1023/a:1012514216429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1675906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005976067", 
              "https://doi.org/10.1134/1.1675906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1631-0705(02)01324-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006089344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0038-1098(95)00038-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006340091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-3093(01)00902-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009878656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1560/vc0e-9ad7-0duk-nx66", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010414503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b312640b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014064766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0022-3727/25/5/010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026639905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/andp.19073281003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027310633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/andp.19093330402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043374472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.77.371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.77.371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.77.371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839598"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-02", 
        "datePublishedReg": "2007-02-01", 
        "description": "It was shown experimentally that the specific heat of nanosized particles was higher than that of macroscopic particles of the same nature. It was also found that the heat capacity increased as the size of nanoparticles decreased. We analyzed the reasons for the anomalous behavior of the heat capacity of nanoparticles. For this purpose, we considered nanoparticles with a simple cubic lattice and an arbitrary external geometric shape. The simplest harmonic interaction potential between the nearest neighbor particles was used. Qualitative agreement with experimental data was obtained. The main factor responsible for the anomalous behavior of small particles was phonon spectrum softening compared with bulk material when free boundary conditions were used. The lower frequencies make a larger contribution to heat capacity. It was found that, apart from particle size, the geometric shape and defect structure of nanoparticles influenced their heat capacity: given the same number of particles, an increase in asymmetry and disorder caused an increase in heat capacity.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1990793107010083", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136550", 
            "issn": [
              "1990-7931", 
              "1990-7923"
            ], 
            "name": "Russian Journal of Physical Chemistry B", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "name": "Anomalous heat capacity of nanoparticles", 
        "pagination": "74-78", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "dd1f4ec4630e70ab4afca1cb477f57f5a2fba34751f61386dd38988bfc80a035"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1990793107010083"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046419675"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1990793107010083", 
          "https://app.dimensions.ai/details/publication/pub.1046419675"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71683_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134%2FS1990793107010083"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1990793107010083'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1990793107010083'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1990793107010083'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1990793107010083'


     

    This table displays all metadata directly associated to this object as RDF triples.

    123 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1990793107010083 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N6861d96fc4384aaabc134e93e4aab756
    4 schema:citation sg:pub.10.1023/a:1012514216429
    5 sg:pub.10.1134/1.1675906
    6 https://doi.org/10.1002/andp.19073281003
    7 https://doi.org/10.1002/andp.19093330402
    8 https://doi.org/10.1016/0038-1098(95)00038-0
    9 https://doi.org/10.1016/s0022-3093(01)00902-4
    10 https://doi.org/10.1016/s0042-207x(02)00291-9
    11 https://doi.org/10.1016/s1631-0705(02)01324-5
    12 https://doi.org/10.1039/b312640b
    13 https://doi.org/10.1088/0022-3727/25/5/010
    14 https://doi.org/10.1103/revmodphys.77.371
    15 https://doi.org/10.1560/vc0e-9ad7-0duk-nx66
    16 schema:datePublished 2007-02
    17 schema:datePublishedReg 2007-02-01
    18 schema:description It was shown experimentally that the specific heat of nanosized particles was higher than that of macroscopic particles of the same nature. It was also found that the heat capacity increased as the size of nanoparticles decreased. We analyzed the reasons for the anomalous behavior of the heat capacity of nanoparticles. For this purpose, we considered nanoparticles with a simple cubic lattice and an arbitrary external geometric shape. The simplest harmonic interaction potential between the nearest neighbor particles was used. Qualitative agreement with experimental data was obtained. The main factor responsible for the anomalous behavior of small particles was phonon spectrum softening compared with bulk material when free boundary conditions were used. The lower frequencies make a larger contribution to heat capacity. It was found that, apart from particle size, the geometric shape and defect structure of nanoparticles influenced their heat capacity: given the same number of particles, an increase in asymmetry and disorder caused an increase in heat capacity.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N1dab5be8079e400caea5b31b2d091f13
    23 N709a30c601dd467180a71d48fa925939
    24 sg:journal.1136550
    25 schema:name Anomalous heat capacity of nanoparticles
    26 schema:pagination 74-78
    27 schema:productId N497c3cbd40634197aaeb1c729fbea43e
    28 Ncba8d8e180574b5c8675c6ac538c6532
    29 Nd5efb956dd10421ebfeb156a4b803618
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046419675
    31 https://doi.org/10.1134/s1990793107010083
    32 schema:sdDatePublished 2019-04-11T12:58
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N2e33f40390814731a78538204e0fcc20
    35 schema:url http://link.springer.com/10.1134%2FS1990793107010083
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N1d264b8909ad45f88b7d8bd16df2a76e rdf:first sg:person.07707571607.38
    40 rdf:rest Nf353bb5c78f344f8ae8bc1421b082b5d
    41 N1dab5be8079e400caea5b31b2d091f13 schema:issueNumber 1
    42 rdf:type schema:PublicationIssue
    43 N2e33f40390814731a78538204e0fcc20 schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 N497c3cbd40634197aaeb1c729fbea43e schema:name dimensions_id
    46 schema:value pub.1046419675
    47 rdf:type schema:PropertyValue
    48 N49a6495a03f54bdba858979dd4cd154e rdf:first sg:person.015657347013.51
    49 rdf:rest rdf:nil
    50 N6861d96fc4384aaabc134e93e4aab756 rdf:first sg:person.011250016500.35
    51 rdf:rest N1d264b8909ad45f88b7d8bd16df2a76e
    52 N709a30c601dd467180a71d48fa925939 schema:volumeNumber 1
    53 rdf:type schema:PublicationVolume
    54 Ncba8d8e180574b5c8675c6ac538c6532 schema:name doi
    55 schema:value 10.1134/s1990793107010083
    56 rdf:type schema:PropertyValue
    57 Nd5efb956dd10421ebfeb156a4b803618 schema:name readcube_id
    58 schema:value dd1f4ec4630e70ab4afca1cb477f57f5a2fba34751f61386dd38988bfc80a035
    59 rdf:type schema:PropertyValue
    60 Nf353bb5c78f344f8ae8bc1421b082b5d rdf:first sg:person.012311460725.02
    61 rdf:rest N49a6495a03f54bdba858979dd4cd154e
    62 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Chemical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Physical Chemistry (incl. Structural)
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1136550 schema:issn 1990-7923
    69 1990-7931
    70 schema:name Russian Journal of Physical Chemistry B
    71 rdf:type schema:Periodical
    72 sg:person.011250016500.35 schema:affiliation https://www.grid.ac/institutes/grid.473785.a
    73 schema:familyName Likhachev
    74 schema:givenName V. N.
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011250016500.35
    76 rdf:type schema:Person
    77 sg:person.012311460725.02 schema:affiliation https://www.grid.ac/institutes/grid.473785.a
    78 schema:familyName Vinogradov
    79 schema:givenName G. A.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012311460725.02
    81 rdf:type schema:Person
    82 sg:person.015657347013.51 schema:affiliation https://www.grid.ac/institutes/grid.423921.f
    83 schema:familyName Alymov
    84 schema:givenName M. I.
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015657347013.51
    86 rdf:type schema:Person
    87 sg:person.07707571607.38 schema:affiliation https://www.grid.ac/institutes/grid.473785.a
    88 schema:familyName Astakhova
    89 schema:givenName T. Yu.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07707571607.38
    91 rdf:type schema:Person
    92 sg:pub.10.1023/a:1012514216429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005663279
    93 https://doi.org/10.1023/a:1012514216429
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1134/1.1675906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005976067
    96 https://doi.org/10.1134/1.1675906
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1002/andp.19073281003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027310633
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1002/andp.19093330402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043374472
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/0038-1098(95)00038-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006340091
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/s0022-3093(01)00902-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009878656
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/s0042-207x(02)00291-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002321385
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/s1631-0705(02)01324-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006089344
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1039/b312640b schema:sameAs https://app.dimensions.ai/details/publication/pub.1014064766
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1088/0022-3727/25/5/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026639905
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/revmodphys.77.371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839598
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1560/vc0e-9ad7-0duk-nx66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010414503
    117 rdf:type schema:CreativeWork
    118 https://www.grid.ac/institutes/grid.423921.f schema:alternateName Baikov Institute of Metallurgy and Materials Science
    119 schema:name Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
    120 rdf:type schema:Organization
    121 https://www.grid.ac/institutes/grid.473785.a schema:alternateName Institute of Biochemical Physics NM Emanuel
    122 schema:name Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
    123 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...