A Generalized Prediction Model of Inhibition of Neuraminidase of Influenza Virus of Various Strains View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

A. V. Mikurova, V. S. Skvortsov

ABSTRACT

Preliminary results of construction of an overall model for prediction of IC50 values of inhibitors of neuraminidase from any influenza virus strains are presented. We used MM-PBSA (MM-GBSA) energy terms calculated for the complexes obtained after modeling of 30 variants of neuraminidase structures, subsequent docking and molecular dynamics simulation as independent variables in prediction equations. The structures of known neuraminidase-inhibiting drugs (oseltamivir, zanamivir and peramivir) and a neuraminidase substrate (MUNANA) were used as ligands. Use of calculation parameters of neuraminidase-inhibitor complexes did not result in the correlation equation with acceptable parameters (R2 ≤ 0.3). However, if information about binding energy of the substrate used for neuraminidase assay (and IC50 detection) is included the resultant IC50 prediction equations became significant (R2 ≥ 0.55). It is concluded that models joining not only various ligands but also numerous variants of the target protein involved in their binding should take into consideration not only the IC50 value as the target parameter but also binding of the neuraminidase substrate used for experimental determination of the IC50 value. In this case the use of modelled proteins is reasonable. The predictive power of such models depends critically on the quality of the modeling of the ligand-protein complexes. More... »

PAGES

322-329

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1990750818040054

DOI

http://dx.doi.org/10.1134/s1990750818040054

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110274678


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Biomedical Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.418846.7", 
          "name": [
            "Institute of Biomedical Chemistry, ul. Pogodinskaya 10,, 119121, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikurova", 
        "givenName": "A. V.", 
        "id": "sg:person.01020626113.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020626113.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biomedical Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.418846.7", 
          "name": [
            "Institute of Biomedical Chemistry, ul. Pogodinskaya 10,, 119121, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skvortsov", 
        "givenName": "V. S.", 
        "id": "sg:person.0636264313.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636264313.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jcc.23905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000494156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/13543776.5.8.793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006180273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.49.11.4515-4520.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013152879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jvi.01514-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015448354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340060402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016480078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340060402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016480078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar000033j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017409579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar000033j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017409579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.45.10.2723-2732.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020806449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm0002679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055932953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm0002679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055932953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18097/pbmc20166203290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068571539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18097/pbmc20166206691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068571590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078746168", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "Preliminary results of construction of an overall model for prediction of IC50 values of inhibitors of neuraminidase from any influenza virus strains are presented. We used MM-PBSA (MM-GBSA) energy terms calculated for the complexes obtained after modeling of 30 variants of neuraminidase structures, subsequent docking and molecular dynamics simulation as independent variables in prediction equations. The structures of known neuraminidase-inhibiting drugs (oseltamivir, zanamivir and peramivir) and a neuraminidase substrate (MUNANA) were used as ligands. Use of calculation parameters of neuraminidase-inhibitor complexes did not result in the correlation equation with acceptable parameters (R2 \u2264 0.3). However, if information about binding energy of the substrate used for neuraminidase assay (and IC50 detection) is included the resultant IC50 prediction equations became significant (R2 \u2265 0.55). It is concluded that models joining not only various ligands but also numerous variants of the target protein involved in their binding should take into consideration not only the IC50 value as the target parameter but also binding of the neuraminidase substrate used for experimental determination of the IC50 value. In this case the use of modelled proteins is reasonable. The predictive power of such models depends critically on the quality of the modeling of the ligand-protein complexes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1990750818040054", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039732", 
        "issn": [
          "1990-7508", 
          "1990-7516"
        ], 
        "name": "Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "A Generalized Prediction Model of Inhibition of Neuraminidase of Influenza Virus of Various Strains", 
    "pagination": "322-329", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d9aef44540684e3d2fe5a28aa3548bd2c84184a8de070b9f95efb429b68f4b33"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1990750818040054"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110274678"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1990750818040054", 
      "https://app.dimensions.ai/details/publication/pub.1110274678"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000278_0000000278/records_79621_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1990750818040054"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1990750818040054'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1990750818040054'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1990750818040054'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1990750818040054'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1990750818040054 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N71e0040f9f694b368de28129cdb0166f
4 schema:citation https://app.dimensions.ai/details/publication/pub.1078746168
5 https://doi.org/10.1002/jcc.23905
6 https://doi.org/10.1002/prot.340060402
7 https://doi.org/10.1021/ar000033j
8 https://doi.org/10.1021/jm0002679
9 https://doi.org/10.1128/aac.45.10.2723-2732.2001
10 https://doi.org/10.1128/aac.49.11.4515-4520.2005
11 https://doi.org/10.1128/jvi.01514-15
12 https://doi.org/10.1517/13543776.5.8.793
13 https://doi.org/10.18097/pbmc20166203290
14 https://doi.org/10.18097/pbmc20166206691
15 schema:datePublished 2018-10
16 schema:datePublishedReg 2018-10-01
17 schema:description Preliminary results of construction of an overall model for prediction of IC50 values of inhibitors of neuraminidase from any influenza virus strains are presented. We used MM-PBSA (MM-GBSA) energy terms calculated for the complexes obtained after modeling of 30 variants of neuraminidase structures, subsequent docking and molecular dynamics simulation as independent variables in prediction equations. The structures of known neuraminidase-inhibiting drugs (oseltamivir, zanamivir and peramivir) and a neuraminidase substrate (MUNANA) were used as ligands. Use of calculation parameters of neuraminidase-inhibitor complexes did not result in the correlation equation with acceptable parameters (R2 ≤ 0.3). However, if information about binding energy of the substrate used for neuraminidase assay (and IC50 detection) is included the resultant IC50 prediction equations became significant (R2 ≥ 0.55). It is concluded that models joining not only various ligands but also numerous variants of the target protein involved in their binding should take into consideration not only the IC50 value as the target parameter but also binding of the neuraminidase substrate used for experimental determination of the IC50 value. In this case the use of modelled proteins is reasonable. The predictive power of such models depends critically on the quality of the modeling of the ligand-protein complexes.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N2b462b89229a4ca88ce0fc4374e4f31c
22 N9156011de074442ebc310605a792b6b5
23 sg:journal.1039732
24 schema:name A Generalized Prediction Model of Inhibition of Neuraminidase of Influenza Virus of Various Strains
25 schema:pagination 322-329
26 schema:productId N237077c6d98e4a6bae7e231ab6d749b2
27 Nd171c4ebf34d420c9883ccf7ad41b137
28 Nf1539e7e45da47d09db8ab4c5753fa1c
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110274678
30 https://doi.org/10.1134/s1990750818040054
31 schema:sdDatePublished 2019-04-11T08:16
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nacdbc5f8f70340ca98b3166fb0ac05c8
34 schema:url https://link.springer.com/10.1134%2FS1990750818040054
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N237077c6d98e4a6bae7e231ab6d749b2 schema:name dimensions_id
39 schema:value pub.1110274678
40 rdf:type schema:PropertyValue
41 N2b462b89229a4ca88ce0fc4374e4f31c schema:volumeNumber 12
42 rdf:type schema:PublicationVolume
43 N71e0040f9f694b368de28129cdb0166f rdf:first sg:person.01020626113.33
44 rdf:rest Na49f1328bfd64527aac89bb0dd904167
45 N9156011de074442ebc310605a792b6b5 schema:issueNumber 4
46 rdf:type schema:PublicationIssue
47 Na49f1328bfd64527aac89bb0dd904167 rdf:first sg:person.0636264313.94
48 rdf:rest rdf:nil
49 Nacdbc5f8f70340ca98b3166fb0ac05c8 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Nd171c4ebf34d420c9883ccf7ad41b137 schema:name doi
52 schema:value 10.1134/s1990750818040054
53 rdf:type schema:PropertyValue
54 Nf1539e7e45da47d09db8ab4c5753fa1c schema:name readcube_id
55 schema:value d9aef44540684e3d2fe5a28aa3548bd2c84184a8de070b9f95efb429b68f4b33
56 rdf:type schema:PropertyValue
57 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
58 schema:name Physical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
61 schema:name Other Physical Sciences
62 rdf:type schema:DefinedTerm
63 sg:journal.1039732 schema:issn 1990-7508
64 1990-7516
65 schema:name Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry
66 rdf:type schema:Periodical
67 sg:person.01020626113.33 schema:affiliation https://www.grid.ac/institutes/grid.418846.7
68 schema:familyName Mikurova
69 schema:givenName A. V.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020626113.33
71 rdf:type schema:Person
72 sg:person.0636264313.94 schema:affiliation https://www.grid.ac/institutes/grid.418846.7
73 schema:familyName Skvortsov
74 schema:givenName V. S.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636264313.94
76 rdf:type schema:Person
77 https://app.dimensions.ai/details/publication/pub.1078746168 schema:CreativeWork
78 https://doi.org/10.1002/jcc.23905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000494156
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1002/prot.340060402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016480078
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1021/ar000033j schema:sameAs https://app.dimensions.ai/details/publication/pub.1017409579
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1021/jm0002679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055932953
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1128/aac.45.10.2723-2732.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020806449
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1128/aac.49.11.4515-4520.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013152879
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1128/jvi.01514-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015448354
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1517/13543776.5.8.793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006180273
93 rdf:type schema:CreativeWork
94 https://doi.org/10.18097/pbmc20166203290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068571539
95 rdf:type schema:CreativeWork
96 https://doi.org/10.18097/pbmc20166206691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068571590
97 rdf:type schema:CreativeWork
98 https://www.grid.ac/institutes/grid.418846.7 schema:alternateName Institute of Biomedical Chemistry
99 schema:name Institute of Biomedical Chemistry, ul. Pogodinskaya 10,, 119121, Moscow, Russia
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...