Forecasting the water inflow into the Krasnoyarsk and Sayano-Shushenskoe reservoirs in the second quarter of the year View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04

AUTHORS

D. A. Burakov, I. N. Gordeev, A. V. Ignatov, O. E. Petkun, L. A. Putintsev, A. A. Chekmarev

ABSTRACT

We consider the various methods of constructing models intended to forecast the average water inflow, in the second quarter of the year, into two reservoirs on the Yenisei river. To solve modeling problems used a new computer technology implemented in the specialized “Stochastic Modeling” software package. Independent data were employed to verify the variants of the models for the formation of variability in quarterly inflow as generated based on different algorithms. A more sophisticated and robust model for forecasting the inflow was constructed as an ensemble of partial models. Based on aggregate results of modeling, we suggest the method of constructing a forecast of the average (for the second quarter) lateral inflow into the Krasnoyarsk reservoir and the inflow into the Sayano-Shushenskoe reservoir by use of observational data accumulated by Srednesibirskoe UGMS (Weather Control and Environmental Monitoring Service), based on an ensemble of partial models. It is established that such an operation reduces the probability of forecasting errors implying an arbitrary selection of models. We constructed forecasts of the aforementioned characteristics using real-time data for 2015. It is stated that the solution of the forecasting problem can be facilitated by using additional information. More... »

PAGES

158-164

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1875372816020104

DOI

http://dx.doi.org/10.1134/s1875372816020104

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044927226


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Krasnoyarsk State Agrarian University", 
          "id": "https://www.grid.ac/institutes/grid.465532.3", 
          "name": [
            "Krasnoyarsk State Agrarian University, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burakov", 
        "givenName": "D. A.", 
        "id": "sg:person.07427113441.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07427113441.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Middle-Siberian Administration of the Hydrometeorological Service, Rosgidromet, Minprirody RF, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gordeev", 
        "givenName": "I. N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Geography", 
          "id": "https://www.grid.ac/institutes/grid.483332.d", 
          "name": [
            "Institute of Geography, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ignatov", 
        "givenName": "A. V.", 
        "id": "sg:person.012626303451.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012626303451.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Krasnoyarsk State Agrarian University", 
          "id": "https://www.grid.ac/institutes/grid.465532.3", 
          "name": [
            "Krasnoyarsk State Agrarian University, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petkun", 
        "givenName": "O. E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Middle-Siberian Administration of the Hydrometeorological Service, Rosgidromet, Minprirody RF, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Putintsev", 
        "givenName": "L. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Geography", 
          "id": "https://www.grid.ac/institutes/grid.483332.d", 
          "name": [
            "Institute of Geography, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chekmarev", 
        "givenName": "A. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.gnr.2010.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032115059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gnr.2010.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042763730"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04", 
    "datePublishedReg": "2016-04-01", 
    "description": "We consider the various methods of constructing models intended to forecast the average water inflow, in the second quarter of the year, into two reservoirs on the Yenisei river. To solve modeling problems used a new computer technology implemented in the specialized \u201cStochastic Modeling\u201d software package. Independent data were employed to verify the variants of the models for the formation of variability in quarterly inflow as generated based on different algorithms. A more sophisticated and robust model for forecasting the inflow was constructed as an ensemble of partial models. Based on aggregate results of modeling, we suggest the method of constructing a forecast of the average (for the second quarter) lateral inflow into the Krasnoyarsk reservoir and the inflow into the Sayano-Shushenskoe reservoir by use of observational data accumulated by Srednesibirskoe UGMS (Weather Control and Environmental Monitoring Service), based on an ensemble of partial models. It is established that such an operation reduces the probability of forecasting errors implying an arbitrary selection of models. We constructed forecasts of the aforementioned characteristics using real-time data for 2015. It is stated that the solution of the forecasting problem can be facilitated by using additional information.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1875372816020104", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136471", 
        "issn": [
          "1875-3728", 
          "1875-371X"
        ], 
        "name": "Geography and Natural Resources", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "Forecasting the water inflow into the Krasnoyarsk and Sayano-Shushenskoe reservoirs in the second quarter of the year", 
    "pagination": "158-164", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d6008f1c6dd2c63ce43c87562670fa7f04fb9a72b1d097530521d2a942377280"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1875372816020104"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044927226"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1875372816020104", 
      "https://app.dimensions.ai/details/publication/pub.1044927226"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88248_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1875372816020104"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1875372816020104'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1875372816020104'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1875372816020104'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1875372816020104'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1875372816020104 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N8bf0da8f5f6f41ba861031dc258b0266
4 schema:citation https://doi.org/10.1016/j.gnr.2010.03.013
5 https://doi.org/10.1016/j.gnr.2010.09.013
6 schema:datePublished 2016-04
7 schema:datePublishedReg 2016-04-01
8 schema:description We consider the various methods of constructing models intended to forecast the average water inflow, in the second quarter of the year, into two reservoirs on the Yenisei river. To solve modeling problems used a new computer technology implemented in the specialized “Stochastic Modeling” software package. Independent data were employed to verify the variants of the models for the formation of variability in quarterly inflow as generated based on different algorithms. A more sophisticated and robust model for forecasting the inflow was constructed as an ensemble of partial models. Based on aggregate results of modeling, we suggest the method of constructing a forecast of the average (for the second quarter) lateral inflow into the Krasnoyarsk reservoir and the inflow into the Sayano-Shushenskoe reservoir by use of observational data accumulated by Srednesibirskoe UGMS (Weather Control and Environmental Monitoring Service), based on an ensemble of partial models. It is established that such an operation reduces the probability of forecasting errors implying an arbitrary selection of models. We constructed forecasts of the aforementioned characteristics using real-time data for 2015. It is stated that the solution of the forecasting problem can be facilitated by using additional information.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N921fa0d4eb244ebea026f97b12b330d0
13 Nf013d99d72c84deab4ae9d9779989fa7
14 sg:journal.1136471
15 schema:name Forecasting the water inflow into the Krasnoyarsk and Sayano-Shushenskoe reservoirs in the second quarter of the year
16 schema:pagination 158-164
17 schema:productId N0b763fad41844a488c46e278bab32fdf
18 N2f0e49686ea94d969017374b5082b638
19 Nbc6b110934974052be2071bc5ce22ebc
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044927226
21 https://doi.org/10.1134/s1875372816020104
22 schema:sdDatePublished 2019-04-11T13:10
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N7b0af6cece474977b9e6b2672c8f6448
25 schema:url https://link.springer.com/10.1134%2FS1875372816020104
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N020010b2b5e849bea225e3c6dbec59d1 schema:affiliation https://www.grid.ac/institutes/grid.483332.d
30 schema:familyName Chekmarev
31 schema:givenName A. A.
32 rdf:type schema:Person
33 N0b763fad41844a488c46e278bab32fdf schema:name readcube_id
34 schema:value d6008f1c6dd2c63ce43c87562670fa7f04fb9a72b1d097530521d2a942377280
35 rdf:type schema:PropertyValue
36 N19f674449bb94f05b20acb00cae800c5 schema:affiliation N87f9f83a00574465a9007e1dd8f28425
37 schema:familyName Gordeev
38 schema:givenName I. N.
39 rdf:type schema:Person
40 N2f0e49686ea94d969017374b5082b638 schema:name doi
41 schema:value 10.1134/s1875372816020104
42 rdf:type schema:PropertyValue
43 N30d301ddc0e84246a7b7a3db48034011 rdf:first N020010b2b5e849bea225e3c6dbec59d1
44 rdf:rest rdf:nil
45 N5aea75a430c6456380ace302f97e4099 schema:affiliation https://www.grid.ac/institutes/grid.465532.3
46 schema:familyName Petkun
47 schema:givenName O. E.
48 rdf:type schema:Person
49 N7b0af6cece474977b9e6b2672c8f6448 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N87f9f83a00574465a9007e1dd8f28425 schema:name Middle-Siberian Administration of the Hydrometeorological Service, Rosgidromet, Minprirody RF, Krasnoyarsk, Russia
52 rdf:type schema:Organization
53 N8bf0da8f5f6f41ba861031dc258b0266 rdf:first sg:person.07427113441.34
54 rdf:rest Nc2b7513d0a7044b1ae968588639f6fe7
55 N921fa0d4eb244ebea026f97b12b330d0 schema:volumeNumber 37
56 rdf:type schema:PublicationVolume
57 N9d73b9c82d804f5c8ef0443a5d47bb16 schema:name Middle-Siberian Administration of the Hydrometeorological Service, Rosgidromet, Minprirody RF, Krasnoyarsk, Russia
58 rdf:type schema:Organization
59 Nacc00c2fe1b6402098b75b072ffd7309 rdf:first sg:person.012626303451.92
60 rdf:rest Nbc6ec66caa5a44d7bcb0d29ec1e2a000
61 Nbb4eb0fba51142398dd95ebb8380c3ed schema:affiliation N9d73b9c82d804f5c8ef0443a5d47bb16
62 schema:familyName Putintsev
63 schema:givenName L. A.
64 rdf:type schema:Person
65 Nbc6b110934974052be2071bc5ce22ebc schema:name dimensions_id
66 schema:value pub.1044927226
67 rdf:type schema:PropertyValue
68 Nbc6ec66caa5a44d7bcb0d29ec1e2a000 rdf:first N5aea75a430c6456380ace302f97e4099
69 rdf:rest Ndd498d0a397f45a0b74e1e39f4f5a9f7
70 Nc2b7513d0a7044b1ae968588639f6fe7 rdf:first N19f674449bb94f05b20acb00cae800c5
71 rdf:rest Nacc00c2fe1b6402098b75b072ffd7309
72 Ndd498d0a397f45a0b74e1e39f4f5a9f7 rdf:first Nbb4eb0fba51142398dd95ebb8380c3ed
73 rdf:rest N30d301ddc0e84246a7b7a3db48034011
74 Nf013d99d72c84deab4ae9d9779989fa7 schema:issueNumber 2
75 rdf:type schema:PublicationIssue
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
80 schema:name Statistics
81 rdf:type schema:DefinedTerm
82 sg:journal.1136471 schema:issn 1875-371X
83 1875-3728
84 schema:name Geography and Natural Resources
85 rdf:type schema:Periodical
86 sg:person.012626303451.92 schema:affiliation https://www.grid.ac/institutes/grid.483332.d
87 schema:familyName Ignatov
88 schema:givenName A. V.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012626303451.92
90 rdf:type schema:Person
91 sg:person.07427113441.34 schema:affiliation https://www.grid.ac/institutes/grid.465532.3
92 schema:familyName Burakov
93 schema:givenName D. A.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07427113441.34
95 rdf:type schema:Person
96 https://doi.org/10.1016/j.gnr.2010.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032115059
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.gnr.2010.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042763730
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.465532.3 schema:alternateName Krasnoyarsk State Agrarian University
101 schema:name Krasnoyarsk State Agrarian University, Krasnoyarsk, Russia
102 rdf:type schema:Organization
103 https://www.grid.ac/institutes/grid.483332.d schema:alternateName Institute of Geography
104 schema:name Institute of Geography, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...