Geometric optimization of T-shaped constructs coupled with a heat generating basement: A numerical approach motivated by Bejan’s constructal theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10

AUTHORS

G. Lorenzini, C. Biserni, F. L. Dalpiaz, T. M. Fagundes, L. A. O. Rocha

ABSTRACT

This work relies on constructal design to perform the geometric optimization of morphing T-shaped fins that remove a constant heat generation rate from a rectangular basement. The fins are bathed by a steady stream with constant ambient temperature and convective heat transfer. The body that serves as a basement for the T-shaped construct generates heat uniformly and it is perfectly insulated on the outer perimeter. It is shown numerically that the global dimensionless thermal resistance of the T-shaped construct can be minimized by geometric optimization subjected to constraints, namely, the basement area constraint, the T-shaped fins area fraction constraint and the auxiliary area fraction constraint, i.e., the ratio between the area that circumscribes the T-shaped fin and the basement area. The optimal design proved to be dependent on the degrees of freedom (L1/L0, t1/t0, H/L): first achieved results indicate that when the geometry is free to morph then the thermal performance is improved according to the constructal principle named by Bejan “optimal distribution of imperfections.” More... »

PAGES

485-497

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1810232817040051

DOI

http://dx.doi.org/10.1134/s1810232817040051

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092688851


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Parma", 
          "id": "https://www.grid.ac/institutes/grid.10383.39", 
          "name": [
            "Dipartimento di Ingegneria e Architettura, Universit\u00e0 degli Studi di Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lorenzini", 
        "givenName": "G.", 
        "id": "sg:person.013714140501.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013714140501.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bologna", 
          "id": "https://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Dipartimento di Ingegneria Industriale, Universit\u00e0 degli Studi di Bologna, Viale Risorgimento 2, 40136, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biserni", 
        "givenName": "C.", 
        "id": "sg:person.016104462101.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016104462101.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Rio Grande do Sul", 
          "id": "https://www.grid.ac/institutes/grid.8532.c", 
          "name": [
            "Universidade Federal do Rio Grande do Sul, Programa de P\u00f3s-Gradua\u00e7\u00e3o em Engenharia Mec\u00e2nica, Rua Sarmento Leite, 425, 90050-170, Porto Alegre, RS, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dalpiaz", 
        "givenName": "F. L.", 
        "id": "sg:person.010626266251.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010626266251.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Rio Grande do Sul", 
          "id": "https://www.grid.ac/institutes/grid.8532.c", 
          "name": [
            "Universidade Federal do Rio Grande do Sul, Programa de P\u00f3s-Gradua\u00e7\u00e3o em Engenharia Mec\u00e2nica, Rua Sarmento Leite, 425, 90050-170, Porto Alegre, RS, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fagundes", 
        "givenName": "T. M.", 
        "id": "sg:person.011003125211.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011003125211.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Rio Grande do Sul", 
          "id": "https://www.grid.ac/institutes/grid.8532.c", 
          "name": [
            "Department of Mechanical Engineering, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 425, 90050-170, Porto Alegre, RS, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rocha", 
        "givenName": "L. A. O.", 
        "id": "sg:person.016656000156.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656000156.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000204237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2008.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009893295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012354720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014449602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2012.11.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016116353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(99)00283-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022031407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.plrev.2013.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022588768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2010.11.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023560642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2006.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030164353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030194601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(96)00175-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030602293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2003.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035182207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0306-2619(00)00023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037339065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.plrev.2008.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038464837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0196-8904(00)00038-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048611134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051061984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2015.02.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051882657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2221896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057848872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3606555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057983902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2495/dne-v4-n4-386-394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070859521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2495/dne-v5-n3-242-253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070859547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2495/jdn-v2-n4-319-327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070859824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103209804", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "This work relies on constructal design to perform the geometric optimization of morphing T-shaped fins that remove a constant heat generation rate from a rectangular basement. The fins are bathed by a steady stream with constant ambient temperature and convective heat transfer. The body that serves as a basement for the T-shaped construct generates heat uniformly and it is perfectly insulated on the outer perimeter. It is shown numerically that the global dimensionless thermal resistance of the T-shaped construct can be minimized by geometric optimization subjected to constraints, namely, the basement area constraint, the T-shaped fins area fraction constraint and the auxiliary area fraction constraint, i.e., the ratio between the area that circumscribes the T-shaped fin and the basement area. The optimal design proved to be dependent on the degrees of freedom (L1/L0, t1/t0, H/L): first achieved results indicate that when the geometry is free to morph then the thermal performance is improved according to the constructal principle named by Bejan \u201coptimal distribution of imperfections.\u201d", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1810232817040051", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136561", 
        "issn": [
          "1810-2328", 
          "1990-5432"
        ], 
        "name": "Journal of Engineering Thermophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Geometric optimization of T-shaped constructs coupled with a heat generating basement: A numerical approach motivated by Bejan\u2019s constructal theory", 
    "pagination": "485-497", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "54ef74e24ea0efa37fb9d9daecd42924b23e9871b6f6f20af11062af0b2b56da"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1810232817040051"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092688851"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1810232817040051", 
      "https://app.dimensions.ai/details/publication/pub.1092688851"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S1810232817040051"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1810232817040051'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1810232817040051'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1810232817040051'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1810232817040051'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1810232817040051 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N81786300e2284195b78dcf72223de6e9
4 schema:citation https://app.dimensions.ai/details/publication/pub.1103209804
5 https://doi.org/10.1016/0017-9310(96)00175-5
6 https://doi.org/10.1016/j.energy.2010.11.041
7 https://doi.org/10.1016/j.energy.2012.11.052
8 https://doi.org/10.1016/j.energy.2015.02.102
9 https://doi.org/10.1016/j.ijheatmasstransfer.2003.12.018
10 https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.019
11 https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.014
12 https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.036
13 https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.007
14 https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.070
15 https://doi.org/10.1016/j.jtbi.2006.05.010
16 https://doi.org/10.1016/j.jtbi.2008.06.026
17 https://doi.org/10.1016/j.plrev.2008.12.002
18 https://doi.org/10.1016/j.plrev.2013.03.007
19 https://doi.org/10.1016/s0017-9310(99)00283-5
20 https://doi.org/10.1016/s0196-8904(00)00038-8
21 https://doi.org/10.1016/s0306-2619(00)00023-4
22 https://doi.org/10.1063/1.2221896
23 https://doi.org/10.1063/1.3606555
24 https://doi.org/10.2495/dne-v4-n4-386-394
25 https://doi.org/10.2495/dne-v5-n3-242-253
26 https://doi.org/10.2495/jdn-v2-n4-319-327
27 schema:datePublished 2017-10
28 schema:datePublishedReg 2017-10-01
29 schema:description This work relies on constructal design to perform the geometric optimization of morphing T-shaped fins that remove a constant heat generation rate from a rectangular basement. The fins are bathed by a steady stream with constant ambient temperature and convective heat transfer. The body that serves as a basement for the T-shaped construct generates heat uniformly and it is perfectly insulated on the outer perimeter. It is shown numerically that the global dimensionless thermal resistance of the T-shaped construct can be minimized by geometric optimization subjected to constraints, namely, the basement area constraint, the T-shaped fins area fraction constraint and the auxiliary area fraction constraint, i.e., the ratio between the area that circumscribes the T-shaped fin and the basement area. The optimal design proved to be dependent on the degrees of freedom (L1/L0, t1/t0, H/L): first achieved results indicate that when the geometry is free to morph then the thermal performance is improved according to the constructal principle named by Bejan “optimal distribution of imperfections.”
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N6e088f404a554958bc792a3f8667de0a
34 Ne81418fd7f174622a881160fdce38932
35 sg:journal.1136561
36 schema:name Geometric optimization of T-shaped constructs coupled with a heat generating basement: A numerical approach motivated by Bejan’s constructal theory
37 schema:pagination 485-497
38 schema:productId N623e3fc985be4846a726fd2503bc9fd5
39 N916bfff843bd426bb3f650ecd2121dd1
40 Nb4f7956a493f468f850ae2e6aead82ee
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092688851
42 https://doi.org/10.1134/s1810232817040051
43 schema:sdDatePublished 2019-04-10T17:44
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nf7bdbc5f1d8443dd836484a02ecbb4e3
46 schema:url http://link.springer.com/10.1134/S1810232817040051
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N09b21651c3a4428285a80c1ed9227d21 rdf:first sg:person.011003125211.50
51 rdf:rest Nac4169974f9241a5a50496ddf437e993
52 N0f51842155f24ff9ad3cbebf310f2074 rdf:first sg:person.016104462101.46
53 rdf:rest Nb8e09e390d0d4eb3bba82b01051a7d33
54 N623e3fc985be4846a726fd2503bc9fd5 schema:name doi
55 schema:value 10.1134/s1810232817040051
56 rdf:type schema:PropertyValue
57 N6e088f404a554958bc792a3f8667de0a schema:issueNumber 4
58 rdf:type schema:PublicationIssue
59 N81786300e2284195b78dcf72223de6e9 rdf:first sg:person.013714140501.81
60 rdf:rest N0f51842155f24ff9ad3cbebf310f2074
61 N916bfff843bd426bb3f650ecd2121dd1 schema:name readcube_id
62 schema:value 54ef74e24ea0efa37fb9d9daecd42924b23e9871b6f6f20af11062af0b2b56da
63 rdf:type schema:PropertyValue
64 Nac4169974f9241a5a50496ddf437e993 rdf:first sg:person.016656000156.26
65 rdf:rest rdf:nil
66 Nb4f7956a493f468f850ae2e6aead82ee schema:name dimensions_id
67 schema:value pub.1092688851
68 rdf:type schema:PropertyValue
69 Nb8e09e390d0d4eb3bba82b01051a7d33 rdf:first sg:person.010626266251.97
70 rdf:rest N09b21651c3a4428285a80c1ed9227d21
71 Ne81418fd7f174622a881160fdce38932 schema:volumeNumber 26
72 rdf:type schema:PublicationVolume
73 Nf7bdbc5f1d8443dd836484a02ecbb4e3 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
76 schema:name Engineering
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
79 schema:name Interdisciplinary Engineering
80 rdf:type schema:DefinedTerm
81 sg:journal.1136561 schema:issn 1810-2328
82 1990-5432
83 schema:name Journal of Engineering Thermophysics
84 rdf:type schema:Periodical
85 sg:person.010626266251.97 schema:affiliation https://www.grid.ac/institutes/grid.8532.c
86 schema:familyName Dalpiaz
87 schema:givenName F. L.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010626266251.97
89 rdf:type schema:Person
90 sg:person.011003125211.50 schema:affiliation https://www.grid.ac/institutes/grid.8532.c
91 schema:familyName Fagundes
92 schema:givenName T. M.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011003125211.50
94 rdf:type schema:Person
95 sg:person.013714140501.81 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
96 schema:familyName Lorenzini
97 schema:givenName G.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013714140501.81
99 rdf:type schema:Person
100 sg:person.016104462101.46 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
101 schema:familyName Biserni
102 schema:givenName C.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016104462101.46
104 rdf:type schema:Person
105 sg:person.016656000156.26 schema:affiliation https://www.grid.ac/institutes/grid.8532.c
106 schema:familyName Rocha
107 schema:givenName L. A. O.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656000156.26
109 rdf:type schema:Person
110 https://app.dimensions.ai/details/publication/pub.1103209804 schema:CreativeWork
111 https://doi.org/10.1016/0017-9310(96)00175-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030602293
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.energy.2010.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023560642
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.energy.2012.11.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016116353
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.energy.2015.02.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051882657
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ijheatmasstransfer.2003.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035182207
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000204237
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012354720
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030194601
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014449602
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051061984
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jtbi.2006.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030164353
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jtbi.2008.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009893295
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.plrev.2008.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038464837
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.plrev.2013.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022588768
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0017-9310(99)00283-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022031407
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0196-8904(00)00038-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048611134
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0306-2619(00)00023-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037339065
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.2221896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057848872
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.3606555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057983902
148 rdf:type schema:CreativeWork
149 https://doi.org/10.2495/dne-v4-n4-386-394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070859521
150 rdf:type schema:CreativeWork
151 https://doi.org/10.2495/dne-v5-n3-242-253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070859547
152 rdf:type schema:CreativeWork
153 https://doi.org/10.2495/jdn-v2-n4-319-327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070859824
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.10383.39 schema:alternateName University of Parma
156 schema:name Dipartimento di Ingegneria e Architettura, Università degli Studi di Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.6292.f schema:alternateName University of Bologna
159 schema:name Dipartimento di Ingegneria Industriale, Università degli Studi di Bologna, Viale Risorgimento 2, 40136, Bologna, Italy
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.8532.c schema:alternateName Federal University of Rio Grande do Sul
162 schema:name Department of Mechanical Engineering, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 425, 90050-170, Porto Alegre, RS, Brazil
163 Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Engenharia Mecânica, Rua Sarmento Leite, 425, 90050-170, Porto Alegre, RS, Brazil
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...