Turbulent flow field analysis of a jet in cross flow by DNS View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-07

AUTHORS

J. Lei, X. Wang, G. Xie, G. Lorenzini

ABSTRACT

The turbulent flow field induced by a round jet in crossflow is calculated by parallel direct numerical simulation (DNS) on multi-GPU clusters. The DNS is based on the lattice- Boltzmannmethod.With currentGPUsettings, a grid systemof 1.5×108 is adopted and the largest jet Reynolds number reaches 3000. The jet is orthogonal to the mainstream flow direction. The validated code produces good agreements with theory and experiment. Steady and unsteady vortical structures are presented based on velocity fields and vorticity distributions. Profiles of Reynolds stress components are also displayed and analyzed. Hair-pin coherent structures are presented based on second invariant of velocity gradient. Transport of turbulent kinetic energy is represented by budget terms in x-, y- and z-direction planes and along the leading and trailing edges of jet trajectory. More... »

PAGES

259-269

References to SciGraph publications

  • 2012-07. On numerical modeling of the dynamics of turbulent wake behind a towed body in linearly stratified medium in JOURNAL OF ENGINEERING THERMOPHYSICS
  • 2002-09. Flow mapping of a jet in crossflow with Stereoscopic PIV in JOURNAL OF VISUALIZATION
  • 2009-03. Numerical model of round turbulent jets in JOURNAL OF ENGINEERING THERMOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1810232815030078

    DOI

    http://dx.doi.org/10.1134/s1810232815030078

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007470547


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Xi'an Jiaotong University", 
              "id": "https://www.grid.ac/institutes/grid.43169.39", 
              "name": [
                "State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lei", 
            "givenName": "J.", 
            "id": "sg:person.015223107071.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015223107071.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xi'an Jiaotong University", 
              "id": "https://www.grid.ac/institutes/grid.43169.39", 
              "name": [
                "State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "X.", 
            "id": "sg:person.011121155630.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011121155630.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Northwestern Polytechnical University", 
              "id": "https://www.grid.ac/institutes/grid.440588.5", 
              "name": [
                "School of Mechanical Engineering, Northwestern Polytechnical University, 710049, Xi\u2019an, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "G.", 
            "id": "sg:person.016632013735.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016632013735.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Parma", 
              "id": "https://www.grid.ac/institutes/grid.10383.39", 
              "name": [
                "Department of Industrial Engineering, University of Parma, Parco area delle Scienze 181/A, 43124, Parma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lorenzini", 
            "givenName": "G.", 
            "id": "sg:person.013714140501.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013714140501.81"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jcp.2010.01.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001376452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1810232809010068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003505598", 
              "https://doi.org/10.1134/s1810232809010068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1810232809010068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003505598", 
              "https://doi.org/10.1134/s1810232809010068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2011.04.166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004383286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2014/742432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005774147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compfluid.2010.04.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012690812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.parco.2011.02.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017559670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1810232812030010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035962147", 
              "https://doi.org/10.1134/s1810232812030010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03182330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038515357", 
              "https://doi.org/10.1007/bf03182330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03182330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038515357", 
              "https://doi.org/10.1007/bf03182330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2015/956827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038623639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10255842.2011.560842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044649984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112097007271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053800128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022112094003800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054058631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.4025574", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062150890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3850/s2010428612000232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071478798"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-07", 
        "datePublishedReg": "2015-07-01", 
        "description": "The turbulent flow field induced by a round jet in crossflow is calculated by parallel direct numerical simulation (DNS) on multi-GPU clusters. The DNS is based on the lattice- Boltzmannmethod.With currentGPUsettings, a grid systemof 1.5\u00d7108 is adopted and the largest jet Reynolds number reaches 3000. The jet is orthogonal to the mainstream flow direction. The validated code produces good agreements with theory and experiment. Steady and unsteady vortical structures are presented based on velocity fields and vorticity distributions. Profiles of Reynolds stress components are also displayed and analyzed. Hair-pin coherent structures are presented based on second invariant of velocity gradient. Transport of turbulent kinetic energy is represented by budget terms in x-, y- and z-direction planes and along the leading and trailing edges of jet trajectory.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1810232815030078", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136561", 
            "issn": [
              "1810-2328", 
              "1990-5432"
            ], 
            "name": "Journal of Engineering Thermophysics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "24"
          }
        ], 
        "name": "Turbulent flow field analysis of a jet in cross flow by DNS", 
        "pagination": "259-269", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "239565cc55014f697ac527f6f2028bed467640ed55b8d7160404651dd2c51d98"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1810232815030078"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007470547"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1810232815030078", 
          "https://app.dimensions.ai/details/publication/pub.1007470547"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000503.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134%2FS1810232815030078"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1810232815030078'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1810232815030078'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1810232815030078'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1810232815030078'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1810232815030078 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N4eb77f4a907a4be9b0f59164be4f3972
    4 schema:citation sg:pub.10.1007/bf03182330
    5 sg:pub.10.1134/s1810232809010068
    6 sg:pub.10.1134/s1810232812030010
    7 https://doi.org/10.1016/j.compfluid.2010.04.008
    8 https://doi.org/10.1016/j.jcp.2010.01.004
    9 https://doi.org/10.1016/j.parco.2011.02.007
    10 https://doi.org/10.1016/j.procs.2011.04.166
    11 https://doi.org/10.1017/s0022112094003800
    12 https://doi.org/10.1017/s0022112097007271
    13 https://doi.org/10.1080/10255842.2011.560842
    14 https://doi.org/10.1115/1.4025574
    15 https://doi.org/10.1155/2014/742432
    16 https://doi.org/10.1155/2015/956827
    17 https://doi.org/10.3850/s2010428612000232
    18 schema:datePublished 2015-07
    19 schema:datePublishedReg 2015-07-01
    20 schema:description The turbulent flow field induced by a round jet in crossflow is calculated by parallel direct numerical simulation (DNS) on multi-GPU clusters. The DNS is based on the lattice- Boltzmannmethod.With currentGPUsettings, a grid systemof 1.5×108 is adopted and the largest jet Reynolds number reaches 3000. The jet is orthogonal to the mainstream flow direction. The validated code produces good agreements with theory and experiment. Steady and unsteady vortical structures are presented based on velocity fields and vorticity distributions. Profiles of Reynolds stress components are also displayed and analyzed. Hair-pin coherent structures are presented based on second invariant of velocity gradient. Transport of turbulent kinetic energy is represented by budget terms in x-, y- and z-direction planes and along the leading and trailing edges of jet trajectory.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N18315beee7fc4553974f81bb10b3f90d
    25 N31ac0939571044eab3dc938981bdc2d4
    26 sg:journal.1136561
    27 schema:name Turbulent flow field analysis of a jet in cross flow by DNS
    28 schema:pagination 259-269
    29 schema:productId N4f91eaf1f0ef42e290f1cf61f702db93
    30 Nf0ea4e01f0e0460eb714ba88668d3477
    31 Nfa3bd772222447cd94434ec930a0801b
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007470547
    33 https://doi.org/10.1134/s1810232815030078
    34 schema:sdDatePublished 2019-04-11T00:14
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N0c4193f7fb464b19ac519ed8fd9749df
    37 schema:url http://link.springer.com/10.1134%2FS1810232815030078
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N0c4193f7fb464b19ac519ed8fd9749df schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 N18315beee7fc4553974f81bb10b3f90d schema:volumeNumber 24
    44 rdf:type schema:PublicationVolume
    45 N31ac0939571044eab3dc938981bdc2d4 schema:issueNumber 3
    46 rdf:type schema:PublicationIssue
    47 N3abb03d755c049ec81c02b0acc6d363c rdf:first sg:person.016632013735.48
    48 rdf:rest Nd14b2e84aa88419a81eff437be9cf5cb
    49 N4eb77f4a907a4be9b0f59164be4f3972 rdf:first sg:person.015223107071.69
    50 rdf:rest N91d86ae9d8cb422ba380bf533efce155
    51 N4f91eaf1f0ef42e290f1cf61f702db93 schema:name readcube_id
    52 schema:value 239565cc55014f697ac527f6f2028bed467640ed55b8d7160404651dd2c51d98
    53 rdf:type schema:PropertyValue
    54 N91d86ae9d8cb422ba380bf533efce155 rdf:first sg:person.011121155630.07
    55 rdf:rest N3abb03d755c049ec81c02b0acc6d363c
    56 Nd14b2e84aa88419a81eff437be9cf5cb rdf:first sg:person.013714140501.81
    57 rdf:rest rdf:nil
    58 Nf0ea4e01f0e0460eb714ba88668d3477 schema:name doi
    59 schema:value 10.1134/s1810232815030078
    60 rdf:type schema:PropertyValue
    61 Nfa3bd772222447cd94434ec930a0801b schema:name dimensions_id
    62 schema:value pub.1007470547
    63 rdf:type schema:PropertyValue
    64 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Engineering
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Interdisciplinary Engineering
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1136561 schema:issn 1810-2328
    71 1990-5432
    72 schema:name Journal of Engineering Thermophysics
    73 rdf:type schema:Periodical
    74 sg:person.011121155630.07 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
    75 schema:familyName Wang
    76 schema:givenName X.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011121155630.07
    78 rdf:type schema:Person
    79 sg:person.013714140501.81 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
    80 schema:familyName Lorenzini
    81 schema:givenName G.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013714140501.81
    83 rdf:type schema:Person
    84 sg:person.015223107071.69 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
    85 schema:familyName Lei
    86 schema:givenName J.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015223107071.69
    88 rdf:type schema:Person
    89 sg:person.016632013735.48 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
    90 schema:familyName Xie
    91 schema:givenName G.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016632013735.48
    93 rdf:type schema:Person
    94 sg:pub.10.1007/bf03182330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038515357
    95 https://doi.org/10.1007/bf03182330
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1134/s1810232809010068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003505598
    98 https://doi.org/10.1134/s1810232809010068
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1134/s1810232812030010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035962147
    101 https://doi.org/10.1134/s1810232812030010
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/j.compfluid.2010.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012690812
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/j.jcp.2010.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001376452
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/j.parco.2011.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017559670
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.procs.2011.04.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004383286
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1017/s0022112094003800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054058631
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1017/s0022112097007271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053800128
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1080/10255842.2011.560842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044649984
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1115/1.4025574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062150890
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1155/2014/742432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005774147
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1155/2015/956827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038623639
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.3850/s2010428612000232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071478798
    124 rdf:type schema:CreativeWork
    125 https://www.grid.ac/institutes/grid.10383.39 schema:alternateName University of Parma
    126 schema:name Department of Industrial Engineering, University of Parma, Parco area delle Scienze 181/A, 43124, Parma, Italy
    127 rdf:type schema:Organization
    128 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
    129 schema:name State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, 710049, Xi’an, P.R. China
    130 rdf:type schema:Organization
    131 https://www.grid.ac/institutes/grid.440588.5 schema:alternateName Northwestern Polytechnical University
    132 schema:name School of Mechanical Engineering, Northwestern Polytechnical University, 710049, Xi’an, P.R. China
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...