Two-phase nonisothermal flows of LiBr water solution in minichannels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-10

AUTHORS

V. E. Nakoryakov, S. Ya. Misyura, S. L. Elistratov, R. A. Dekhtyar

ABSTRACT

Two-phase flows of LiBr water solution in minichannels with heat exchange is experimentally investigated. Six flow patterns have been revealed: a bubble flow, plug flow, separate and wavy separate flow, dispersed flow, and flow blocking. Contrary to one-component liquids, an additional third phase may appear in desorption of salt solutions, that is, a crystal-hydrate shell on channel walls. The maximum desorption efficiency corresponded to minichannels of 3 mm in diameter and in the presence of a dispersed flow. The desorption rate depends not only on the ratio of liquid, gas, and heat flux velocities, but also on the overall interface area. The maximal interfacial evaporation surface corresponds to the dispersed flow due to the presence of a high concentration of fine-dispersed droplets. Minichannels with a high desorption rate can be effectively applied for high-temperature desorbers of thermal pumps. More... »

PAGES

257-263

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1810232814040018

DOI

http://dx.doi.org/10.1134/s1810232814040018

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016903822


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University", 
          "id": "https://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent\u2019eva 1, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakoryakov", 
        "givenName": "V. E.", 
        "id": "sg:person.07440273776.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440273776.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University", 
          "id": "https://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent\u2019eva 1, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Misyura", 
        "givenName": "S. Ya.", 
        "id": "sg:person.013536110251.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013536110251.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University", 
          "id": "https://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent\u2019eva 1, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elistratov", 
        "givenName": "S. L.", 
        "id": "sg:person.013401122431.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013401122431.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University", 
          "id": "https://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent\u2019eva 1, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dekhtyar", 
        "givenName": "R. A.", 
        "id": "sg:person.016120114273.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016120114273.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0301-9322(93)90007-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005030632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9322(93)90007-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005030632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(01)00318-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011862239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01457630701328262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017306099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/tsci120428116n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020834715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9322(87)90021-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034294682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9322(87)90021-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034294682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035515049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-9322(02)00023-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038037869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10740-006-0094-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042500527", 
          "https://doi.org/10.1007/s10740-006-0094-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-9322(02)00037-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042739880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050309541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/95.465144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061250212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3653176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062136714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/icmm2004-2399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092854018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/icmm2003-1000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092860259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/icmm2003-1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092912792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/icmm2003-1087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092914170"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-10", 
    "datePublishedReg": "2014-10-01", 
    "description": "Two-phase flows of LiBr water solution in minichannels with heat exchange is experimentally investigated. Six flow patterns have been revealed: a bubble flow, plug flow, separate and wavy separate flow, dispersed flow, and flow blocking. Contrary to one-component liquids, an additional third phase may appear in desorption of salt solutions, that is, a crystal-hydrate shell on channel walls. The maximum desorption efficiency corresponded to minichannels of 3 mm in diameter and in the presence of a dispersed flow. The desorption rate depends not only on the ratio of liquid, gas, and heat flux velocities, but also on the overall interface area. The maximal interfacial evaporation surface corresponds to the dispersed flow due to the presence of a high concentration of fine-dispersed droplets. Minichannels with a high desorption rate can be effectively applied for high-temperature desorbers of thermal pumps.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1810232814040018", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136561", 
        "issn": [
          "1810-2328", 
          "1990-5432"
        ], 
        "name": "Journal of Engineering Thermophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Two-phase nonisothermal flows of LiBr water solution in minichannels", 
    "pagination": "257-263", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5089e5fc6cad25762ebd541fa39b2c715d6073213a4b923e2b40658285bbde58"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1810232814040018"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016903822"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1810232814040018", 
      "https://app.dimensions.ai/details/publication/pub.1016903822"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S1810232814040018"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1810232814040018'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1810232814040018'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1810232814040018'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1810232814040018'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1810232814040018 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Ndef575b12ffd40e3ac4fb18f6c3d6bf9
4 schema:citation sg:pub.10.1007/s10740-006-0094-z
5 https://doi.org/10.1016/0301-9322(87)90021-8
6 https://doi.org/10.1016/0301-9322(93)90007-h
7 https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.069
8 https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.013
9 https://doi.org/10.1016/s0017-9310(01)00318-0
10 https://doi.org/10.1016/s0301-9322(02)00023-x
11 https://doi.org/10.1016/s0301-9322(02)00037-x
12 https://doi.org/10.1080/01457630701328262
13 https://doi.org/10.1109/95.465144
14 https://doi.org/10.1115/1.3653176
15 https://doi.org/10.1115/icmm2003-1000
16 https://doi.org/10.1115/icmm2003-1001
17 https://doi.org/10.1115/icmm2003-1087
18 https://doi.org/10.1115/icmm2004-2399
19 https://doi.org/10.2298/tsci120428116n
20 schema:datePublished 2014-10
21 schema:datePublishedReg 2014-10-01
22 schema:description Two-phase flows of LiBr water solution in minichannels with heat exchange is experimentally investigated. Six flow patterns have been revealed: a bubble flow, plug flow, separate and wavy separate flow, dispersed flow, and flow blocking. Contrary to one-component liquids, an additional third phase may appear in desorption of salt solutions, that is, a crystal-hydrate shell on channel walls. The maximum desorption efficiency corresponded to minichannels of 3 mm in diameter and in the presence of a dispersed flow. The desorption rate depends not only on the ratio of liquid, gas, and heat flux velocities, but also on the overall interface area. The maximal interfacial evaporation surface corresponds to the dispersed flow due to the presence of a high concentration of fine-dispersed droplets. Minichannels with a high desorption rate can be effectively applied for high-temperature desorbers of thermal pumps.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N34a406b853ab4d618fe3ad64063474c4
27 N9ae5baad389a4072bc39988308f075e8
28 sg:journal.1136561
29 schema:name Two-phase nonisothermal flows of LiBr water solution in minichannels
30 schema:pagination 257-263
31 schema:productId N562fd9ce1aa74088b68fed52f58a3899
32 Nce5f2e771a63461fa4a5e31e28dc55dc
33 Nda45d38bc66d42f8a159c181d6cc772b
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016903822
35 https://doi.org/10.1134/s1810232814040018
36 schema:sdDatePublished 2019-04-10T23:17
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N99116536f9124865b289466820166bfd
39 schema:url http://link.springer.com/10.1134/S1810232814040018
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N17f82866f5034dd3a6350c6300cc5950 rdf:first sg:person.016120114273.62
44 rdf:rest rdf:nil
45 N34a406b853ab4d618fe3ad64063474c4 schema:volumeNumber 23
46 rdf:type schema:PublicationVolume
47 N379a6a1eaff440799c7be783acd95c5e rdf:first sg:person.013536110251.33
48 rdf:rest N81b5fad4a30949b6833d620a4089c9bc
49 N562fd9ce1aa74088b68fed52f58a3899 schema:name readcube_id
50 schema:value 5089e5fc6cad25762ebd541fa39b2c715d6073213a4b923e2b40658285bbde58
51 rdf:type schema:PropertyValue
52 N81b5fad4a30949b6833d620a4089c9bc rdf:first sg:person.013401122431.45
53 rdf:rest N17f82866f5034dd3a6350c6300cc5950
54 N99116536f9124865b289466820166bfd schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N9ae5baad389a4072bc39988308f075e8 schema:issueNumber 4
57 rdf:type schema:PublicationIssue
58 Nce5f2e771a63461fa4a5e31e28dc55dc schema:name doi
59 schema:value 10.1134/s1810232814040018
60 rdf:type schema:PropertyValue
61 Nda45d38bc66d42f8a159c181d6cc772b schema:name dimensions_id
62 schema:value pub.1016903822
63 rdf:type schema:PropertyValue
64 Ndef575b12ffd40e3ac4fb18f6c3d6bf9 rdf:first sg:person.07440273776.13
65 rdf:rest N379a6a1eaff440799c7be783acd95c5e
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
70 schema:name Interdisciplinary Engineering
71 rdf:type schema:DefinedTerm
72 sg:journal.1136561 schema:issn 1810-2328
73 1990-5432
74 schema:name Journal of Engineering Thermophysics
75 rdf:type schema:Periodical
76 sg:person.013401122431.45 schema:affiliation https://www.grid.ac/institutes/grid.4605.7
77 schema:familyName Elistratov
78 schema:givenName S. L.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013401122431.45
80 rdf:type schema:Person
81 sg:person.013536110251.33 schema:affiliation https://www.grid.ac/institutes/grid.4605.7
82 schema:familyName Misyura
83 schema:givenName S. Ya.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013536110251.33
85 rdf:type schema:Person
86 sg:person.016120114273.62 schema:affiliation https://www.grid.ac/institutes/grid.4605.7
87 schema:familyName Dekhtyar
88 schema:givenName R. A.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016120114273.62
90 rdf:type schema:Person
91 sg:person.07440273776.13 schema:affiliation https://www.grid.ac/institutes/grid.4605.7
92 schema:familyName Nakoryakov
93 schema:givenName V. E.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440273776.13
95 rdf:type schema:Person
96 sg:pub.10.1007/s10740-006-0094-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042500527
97 https://doi.org/10.1007/s10740-006-0094-z
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0301-9322(87)90021-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034294682
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0301-9322(93)90007-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1005030632
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050309541
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035515049
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0017-9310(01)00318-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011862239
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0301-9322(02)00023-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038037869
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0301-9322(02)00037-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042739880
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1080/01457630701328262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017306099
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/95.465144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061250212
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1115/1.3653176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062136714
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1115/icmm2003-1000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092860259
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1115/icmm2003-1001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092912792
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1115/icmm2003-1087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092914170
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1115/icmm2004-2399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092854018
126 rdf:type schema:CreativeWork
127 https://doi.org/10.2298/tsci120428116n schema:sameAs https://app.dimensions.ai/details/publication/pub.1020834715
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.4605.7 schema:alternateName Novosibirsk State University
130 schema:name Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 1, 630090, Novosibirsk, Russia
131 Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...