Constructal design of T-shaped cavity for several convective fluxes imposed at the cavity surfaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-10

AUTHORS

G. Lorenzini, C. Biserni, F. B. Link, L. A. Isoldi, E. D. dos Santos, L. A. O. Rocha

ABSTRACT

The purpose here is to investigate, by means of the constructal principle, the influence of the convective heat transfer flux at the cavity surfaces over the optimal geometry of a T-shaped cavity that intrudes into a solid conducting wall. The cavity is cooled by a steady stream of convection while the solid generates heat uniformly and it is insulated on the external perimeter. The convective heat flux is imposed as a boundary condition of the cavity surfaces and the geometric optimization is achieved for several values of parameter a = (2hA1/2/k)1/2. The structure of the T-shaped cavity has four degrees of freedom: L0/L1 (ratio between the lengths of the stem and bifurcated branches), H1/L1 (ratio between the thickness and length of the bifurcated branches), H0/L0 (ratio between the thickness and length of the stem), and H/L (ratio between the height and length of the conducting solid wall) and one restriction, the ratio between the cavity volume and solid volume (φ). The purpose of the numerical investigation is to minimize the maximal dimensionless excess of temperature between the solid and the cavity. The simulations were performed for fixed values of H/L = 1.0 and φ = 0.1. Even for the first and second levels of optimization, (L1/L0)○○ and (H0/L0)○, the results revealed that there is no universal shape that optimizes the cavity geometry for every imposed value of a. The T-shaped cavity geometry adapts to the variation of the convective heat flux imposed at the cavity surfaces, i.e., the system flows and morphs with the imposed conditions so that its currents flow more and more easily. The three times optimal shape for lower ratios of a is achieved when the cavity has a higher penetration into the solid domain and for a thinner stem. As the magnitude of a increases, the bifurcated branch displaces toward the center of the solid domain and the number of highest temperature points also increases, i.e., the distribution of temperature field is improved according to the constructal principle of optimal distribution of imperfections. More... »

PAGES

309-321

References to SciGraph publications

  • 2012-03. Progress in study on constructal theory and its applications in SCIENCE CHINA TECHNOLOGICAL SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1810232813040048

    DOI

    http://dx.doi.org/10.1134/s1810232813040048

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039305928


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Parma", 
              "id": "https://www.grid.ac/institutes/grid.10383.39", 
              "name": [
                "Dipartimento di Ingegneria Industriale, Universit\u00e0 degli Studi di Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lorenzini", 
            "givenName": "G.", 
            "id": "sg:person.013714140501.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013714140501.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bologna", 
              "id": "https://www.grid.ac/institutes/grid.6292.f", 
              "name": [
                "Dipartimento di Ingegneria Industriale, Universit\u00e0 degli Studi di Bologna, Viale Risorgimento 2, 40136, Bologna, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Biserni", 
            "givenName": "C.", 
            "id": "sg:person.016104462101.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016104462101.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of Rio Grande do Sul", 
              "id": "https://www.grid.ac/institutes/grid.8532.c", 
              "name": [
                "Departamento de Engenharia Mec\u00e2nica, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 425, 90.050-170, Porto Alegre, RS, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Link", 
            "givenName": "F. B.", 
            "id": "sg:person.015377215663.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015377215663.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Funda\u00e7\u00e3o Universidade Federal do Rio Grande", 
              "id": "https://www.grid.ac/institutes/grid.411598.0", 
              "name": [
                "Universidade Federal do Rio Grande, Escola de Engenharia, Av. It\u00e1lia, km 8, 96201-900, Rio Grande, RS, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Isoldi", 
            "givenName": "L. A.", 
            "id": "sg:person.013534402341.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534402341.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Funda\u00e7\u00e3o Universidade Federal do Rio Grande", 
              "id": "https://www.grid.ac/institutes/grid.411598.0", 
              "name": [
                "Universidade Federal do Rio Grande, Escola de Engenharia, Av. It\u00e1lia, km 8, 96201-900, Rio Grande, RS, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "dos Santos", 
            "givenName": "E. D.", 
            "id": "sg:person.07540715745.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07540715745.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Federal University of Rio Grande do Sul", 
              "id": "https://www.grid.ac/institutes/grid.8532.c", 
              "name": [
                "Departamento de Engenharia Mec\u00e2nica, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 425, 90.050-170, Porto Alegre, RS, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rocha", 
            "givenName": "L. A. O.", 
            "id": "sg:person.016656000156.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656000156.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.icheatmasstransfer.2005.07.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001151352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003003400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enconman.2012.09.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003758753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.plrev.2011.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007729370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtbi.2008.06.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009893295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010547275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010988584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4798429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013350005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11431-011-4701-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019387977", 
              "https://doi.org/10.1007/s11431-011-4701-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020663649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0017-9310(99)00283-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022031407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.plrev.2013.03.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022588768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2010.11.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023560642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023773296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/er.1694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025242740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2003.12.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035182207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037323893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mcm.2010.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046568708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)0733-9402(2009)135:4(112)", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057585588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3119754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062101739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.4005296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062145630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2495/dne-v5-n3-212-220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070859544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1103209804", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-10", 
        "datePublishedReg": "2013-10-01", 
        "description": "The purpose here is to investigate, by means of the constructal principle, the influence of the convective heat transfer flux at the cavity surfaces over the optimal geometry of a T-shaped cavity that intrudes into a solid conducting wall. The cavity is cooled by a steady stream of convection while the solid generates heat uniformly and it is insulated on the external perimeter. The convective heat flux is imposed as a boundary condition of the cavity surfaces and the geometric optimization is achieved for several values of parameter a = (2hA1/2/k)1/2. The structure of the T-shaped cavity has four degrees of freedom: L0/L1 (ratio between the lengths of the stem and bifurcated branches), H1/L1 (ratio between the thickness and length of the bifurcated branches), H0/L0 (ratio between the thickness and length of the stem), and H/L (ratio between the height and length of the conducting solid wall) and one restriction, the ratio between the cavity volume and solid volume (\u03c6). The purpose of the numerical investigation is to minimize the maximal dimensionless excess of temperature between the solid and the cavity. The simulations were performed for fixed values of H/L = 1.0 and \u03c6 = 0.1. Even for the first and second levels of optimization, (L1/L0)\u25cb\u25cb and (H0/L0)\u25cb, the results revealed that there is no universal shape that optimizes the cavity geometry for every imposed value of a. The T-shaped cavity geometry adapts to the variation of the convective heat flux imposed at the cavity surfaces, i.e., the system flows and morphs with the imposed conditions so that its currents flow more and more easily. The three times optimal shape for lower ratios of a is achieved when the cavity has a higher penetration into the solid domain and for a thinner stem. As the magnitude of a increases, the bifurcated branch displaces toward the center of the solid domain and the number of highest temperature points also increases, i.e., the distribution of temperature field is improved according to the constructal principle of optimal distribution of imperfections.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1810232813040048", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136561", 
            "issn": [
              "1810-2328", 
              "1990-5432"
            ], 
            "name": "Journal of Engineering Thermophysics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "name": "Constructal design of T-shaped cavity for several convective fluxes imposed at the cavity surfaces", 
        "pagination": "309-321", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bb3b685542a7f2a7f55764dc71e0b273562c2f61f8a8c36e3bb40d94b0a1895e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1810232813040048"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039305928"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1810232813040048", 
          "https://app.dimensions.ai/details/publication/pub.1039305928"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000591.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134/S1810232813040048"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1810232813040048'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1810232813040048'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1810232813040048'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1810232813040048'


     

    This table displays all metadata directly associated to this object as RDF triples.

    174 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1810232813040048 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author Nb7bb5fa42be04b1bb122b14e39b38651
    4 schema:citation sg:pub.10.1007/s11431-011-4701-9
    5 https://app.dimensions.ai/details/publication/pub.1103209804
    6 https://doi.org/10.1002/er.1694
    7 https://doi.org/10.1016/j.enconman.2012.09.031
    8 https://doi.org/10.1016/j.energy.2010.11.041
    9 https://doi.org/10.1016/j.icheatmasstransfer.2005.07.010
    10 https://doi.org/10.1016/j.ijheatmasstransfer.2003.12.018
    11 https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.037
    12 https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.006
    13 https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.020
    14 https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.021
    15 https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.057
    16 https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.009
    17 https://doi.org/10.1016/j.jtbi.2008.06.026
    18 https://doi.org/10.1016/j.mcm.2010.06.017
    19 https://doi.org/10.1016/j.plrev.2011.05.010
    20 https://doi.org/10.1016/j.plrev.2013.03.007
    21 https://doi.org/10.1016/s0017-9310(99)00283-5
    22 https://doi.org/10.1061/(asce)0733-9402(2009)135:4(112)
    23 https://doi.org/10.1063/1.4798429
    24 https://doi.org/10.1115/1.3119754
    25 https://doi.org/10.1115/1.4005296
    26 https://doi.org/10.2495/dne-v5-n3-212-220
    27 schema:datePublished 2013-10
    28 schema:datePublishedReg 2013-10-01
    29 schema:description The purpose here is to investigate, by means of the constructal principle, the influence of the convective heat transfer flux at the cavity surfaces over the optimal geometry of a T-shaped cavity that intrudes into a solid conducting wall. The cavity is cooled by a steady stream of convection while the solid generates heat uniformly and it is insulated on the external perimeter. The convective heat flux is imposed as a boundary condition of the cavity surfaces and the geometric optimization is achieved for several values of parameter a = (2hA1/2/k)1/2. The structure of the T-shaped cavity has four degrees of freedom: L0/L1 (ratio between the lengths of the stem and bifurcated branches), H1/L1 (ratio between the thickness and length of the bifurcated branches), H0/L0 (ratio between the thickness and length of the stem), and H/L (ratio between the height and length of the conducting solid wall) and one restriction, the ratio between the cavity volume and solid volume (φ). The purpose of the numerical investigation is to minimize the maximal dimensionless excess of temperature between the solid and the cavity. The simulations were performed for fixed values of H/L = 1.0 and φ = 0.1. Even for the first and second levels of optimization, (L1/L0)○○ and (H0/L0)○, the results revealed that there is no universal shape that optimizes the cavity geometry for every imposed value of a. The T-shaped cavity geometry adapts to the variation of the convective heat flux imposed at the cavity surfaces, i.e., the system flows and morphs with the imposed conditions so that its currents flow more and more easily. The three times optimal shape for lower ratios of a is achieved when the cavity has a higher penetration into the solid domain and for a thinner stem. As the magnitude of a increases, the bifurcated branch displaces toward the center of the solid domain and the number of highest temperature points also increases, i.e., the distribution of temperature field is improved according to the constructal principle of optimal distribution of imperfections.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N98c472beb5ff4a17a9a6985097264552
    34 Necc278def32149b3b76ba9350eae8377
    35 sg:journal.1136561
    36 schema:name Constructal design of T-shaped cavity for several convective fluxes imposed at the cavity surfaces
    37 schema:pagination 309-321
    38 schema:productId N805b49f6924148e99b0505b044c3abdc
    39 Nc81894a460a74fc28b947d8ada9de74e
    40 Nea9ddd461b404cbcb0bc3c11c6f3a8e9
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039305928
    42 https://doi.org/10.1134/s1810232813040048
    43 schema:sdDatePublished 2019-04-10T13:30
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Ncfaffbd2fe0346b7bcf2ebc585d3da33
    46 schema:url http://link.springer.com/10.1134/S1810232813040048
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N0b76f444c1724fd49444d9d4d1a26339 rdf:first sg:person.016656000156.26
    51 rdf:rest rdf:nil
    52 N0c0ce49ebb274e00be052038b94847cd rdf:first sg:person.07540715745.14
    53 rdf:rest N0b76f444c1724fd49444d9d4d1a26339
    54 N415157e210724b9ca2ffa5dd4e054884 rdf:first sg:person.015377215663.13
    55 rdf:rest Nac7810571d574ad8a1a7de3951481d68
    56 N805b49f6924148e99b0505b044c3abdc schema:name dimensions_id
    57 schema:value pub.1039305928
    58 rdf:type schema:PropertyValue
    59 N91350ee32a2d454ea31d2ef7aa2b7f88 rdf:first sg:person.016104462101.46
    60 rdf:rest N415157e210724b9ca2ffa5dd4e054884
    61 N98c472beb5ff4a17a9a6985097264552 schema:issueNumber 4
    62 rdf:type schema:PublicationIssue
    63 Nac7810571d574ad8a1a7de3951481d68 rdf:first sg:person.013534402341.51
    64 rdf:rest N0c0ce49ebb274e00be052038b94847cd
    65 Nb7bb5fa42be04b1bb122b14e39b38651 rdf:first sg:person.013714140501.81
    66 rdf:rest N91350ee32a2d454ea31d2ef7aa2b7f88
    67 Nc81894a460a74fc28b947d8ada9de74e schema:name doi
    68 schema:value 10.1134/s1810232813040048
    69 rdf:type schema:PropertyValue
    70 Ncfaffbd2fe0346b7bcf2ebc585d3da33 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 Nea9ddd461b404cbcb0bc3c11c6f3a8e9 schema:name readcube_id
    73 schema:value bb3b685542a7f2a7f55764dc71e0b273562c2f61f8a8c36e3bb40d94b0a1895e
    74 rdf:type schema:PropertyValue
    75 Necc278def32149b3b76ba9350eae8377 schema:volumeNumber 22
    76 rdf:type schema:PublicationVolume
    77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Engineering
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Interdisciplinary Engineering
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1136561 schema:issn 1810-2328
    84 1990-5432
    85 schema:name Journal of Engineering Thermophysics
    86 rdf:type schema:Periodical
    87 sg:person.013534402341.51 schema:affiliation https://www.grid.ac/institutes/grid.411598.0
    88 schema:familyName Isoldi
    89 schema:givenName L. A.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013534402341.51
    91 rdf:type schema:Person
    92 sg:person.013714140501.81 schema:affiliation https://www.grid.ac/institutes/grid.10383.39
    93 schema:familyName Lorenzini
    94 schema:givenName G.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013714140501.81
    96 rdf:type schema:Person
    97 sg:person.015377215663.13 schema:affiliation https://www.grid.ac/institutes/grid.8532.c
    98 schema:familyName Link
    99 schema:givenName F. B.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015377215663.13
    101 rdf:type schema:Person
    102 sg:person.016104462101.46 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
    103 schema:familyName Biserni
    104 schema:givenName C.
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016104462101.46
    106 rdf:type schema:Person
    107 sg:person.016656000156.26 schema:affiliation https://www.grid.ac/institutes/grid.8532.c
    108 schema:familyName Rocha
    109 schema:givenName L. A. O.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656000156.26
    111 rdf:type schema:Person
    112 sg:person.07540715745.14 schema:affiliation https://www.grid.ac/institutes/grid.411598.0
    113 schema:familyName dos Santos
    114 schema:givenName E. D.
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07540715745.14
    116 rdf:type schema:Person
    117 sg:pub.10.1007/s11431-011-4701-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019387977
    118 https://doi.org/10.1007/s11431-011-4701-9
    119 rdf:type schema:CreativeWork
    120 https://app.dimensions.ai/details/publication/pub.1103209804 schema:CreativeWork
    121 https://doi.org/10.1002/er.1694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025242740
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.enconman.2012.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003758753
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/j.energy.2010.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023560642
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.icheatmasstransfer.2005.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001151352
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.ijheatmasstransfer.2003.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035182207
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020663649
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023773296
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010988584
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037323893
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010547275
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003003400
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.jtbi.2008.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009893295
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.mcm.2010.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046568708
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.plrev.2011.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007729370
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.plrev.2013.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022588768
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/s0017-9310(99)00283-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022031407
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1061/(asce)0733-9402(2009)135:4(112) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057585588
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1063/1.4798429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013350005
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1115/1.3119754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062101739
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1115/1.4005296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062145630
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.2495/dne-v5-n3-212-220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070859544
    162 rdf:type schema:CreativeWork
    163 https://www.grid.ac/institutes/grid.10383.39 schema:alternateName University of Parma
    164 schema:name Dipartimento di Ingegneria Industriale, Università degli Studi di Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
    165 rdf:type schema:Organization
    166 https://www.grid.ac/institutes/grid.411598.0 schema:alternateName Fundação Universidade Federal do Rio Grande
    167 schema:name Universidade Federal do Rio Grande, Escola de Engenharia, Av. Itália, km 8, 96201-900, Rio Grande, RS, Brazil
    168 rdf:type schema:Organization
    169 https://www.grid.ac/institutes/grid.6292.f schema:alternateName University of Bologna
    170 schema:name Dipartimento di Ingegneria Industriale, Università degli Studi di Bologna, Viale Risorgimento 2, 40136, Bologna, Italy
    171 rdf:type schema:Organization
    172 https://www.grid.ac/institutes/grid.8532.c schema:alternateName Federal University of Rio Grande do Sul
    173 schema:name Departamento de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 425, 90.050-170, Porto Alegre, RS, Brazil
    174 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...