Boiling crisis in droplets of ethanol water solution on the heating surface View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-01

AUTHORS

V. E. Nakoryakov, S. Ya. Misyura, S. L. Elistratov

ABSTRACT

Evaporation of droplets of ethanol water solution on a heated surface is studied experimentally at high heat fluxes. The behavior of water-alcohol mixtures was examined under the conditions of heat transfer crisis. Direct measurement of the current mass of evaporating droplets allows us to study the behavior of liquid batches in significantly nonstationary processes. An insignificant alcohol admixture to water increases significantly the transitional area of the crisis. The maximal length of transitional area corresponds to a mass concentration of alcohol of about 30%. For this concentration the heat transfer coefficient of the water-alcohol solution is maximal. It is shown that addition of highly volatile liquids to water allows efficient control of evaporation rate, which can be used for engineering processes. More... »

PAGES

1-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1810232813010013

DOI

http://dx.doi.org/10.1134/s1810232813010013

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028069192


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent\u2019eva 1, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakoryakov", 
        "givenName": "V. E.", 
        "id": "sg:person.07440273776.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440273776.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent\u2019eva 1, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Misyura", 
        "givenName": "S. Ya.", 
        "id": "sg:person.013536110251.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013536110251.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent\u2019eva 1, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elistratov", 
        "givenName": "S. L.", 
        "id": "sg:person.013401122431.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013401122431.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0379-7112(96)00040-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007942785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2008.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010234583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1205/026387604323050182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037572091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2010.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045906973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050309541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2509(66)85100-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052935198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112005008190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054048242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100346a065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055666094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0118322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056046586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0118322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056046586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1321258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057694399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3131062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057915190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3488676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057960847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2826080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062085889"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-01", 
    "datePublishedReg": "2013-01-01", 
    "description": "Evaporation of droplets of ethanol water solution on a heated surface is studied experimentally at high heat fluxes. The behavior of water-alcohol mixtures was examined under the conditions of heat transfer crisis. Direct measurement of the current mass of evaporating droplets allows us to study the behavior of liquid batches in significantly nonstationary processes. An insignificant alcohol admixture to water increases significantly the transitional area of the crisis. The maximal length of transitional area corresponds to a mass concentration of alcohol of about 30%. For this concentration the heat transfer coefficient of the water-alcohol solution is maximal. It is shown that addition of highly volatile liquids to water allows efficient control of evaporation rate, which can be used for engineering processes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1810232813010013", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136561", 
        "issn": [
          "1810-2328", 
          "1990-5432"
        ], 
        "name": "Journal of Engineering Thermophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Boiling crisis in droplets of ethanol water solution on the heating surface", 
    "pagination": "1-6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "85b6c75842f089da99c6d80af6b1a80f2429b74110a4e12c590c681fd351f8c4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1810232813010013"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028069192"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1810232813010013", 
      "https://app.dimensions.ai/details/publication/pub.1028069192"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000488.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S1810232813010013"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1810232813010013'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1810232813010013'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1810232813010013'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1810232813010013'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1810232813010013 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nbd895f62099f4a5b84b1324aafa99e11
4 schema:citation https://doi.org/10.1016/0009-2509(66)85100-x
5 https://doi.org/10.1016/j.applthermaleng.2008.06.011
6 https://doi.org/10.1016/j.expthermflusci.2010.12.004
7 https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.069
8 https://doi.org/10.1016/s0379-7112(96)00040-9
9 https://doi.org/10.1017/s0022112005008190
10 https://doi.org/10.1021/j100346a065
11 https://doi.org/10.1021/jp0118322
12 https://doi.org/10.1063/1.1321258
13 https://doi.org/10.1063/1.3131062
14 https://doi.org/10.1063/1.3488676
15 https://doi.org/10.1115/1.2826080
16 https://doi.org/10.1205/026387604323050182
17 schema:datePublished 2013-01
18 schema:datePublishedReg 2013-01-01
19 schema:description Evaporation of droplets of ethanol water solution on a heated surface is studied experimentally at high heat fluxes. The behavior of water-alcohol mixtures was examined under the conditions of heat transfer crisis. Direct measurement of the current mass of evaporating droplets allows us to study the behavior of liquid batches in significantly nonstationary processes. An insignificant alcohol admixture to water increases significantly the transitional area of the crisis. The maximal length of transitional area corresponds to a mass concentration of alcohol of about 30%. For this concentration the heat transfer coefficient of the water-alcohol solution is maximal. It is shown that addition of highly volatile liquids to water allows efficient control of evaporation rate, which can be used for engineering processes.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N596b41aa7b0e4e97b8326e4f56bd28ba
24 N803b52c9d858411a872f80726c75688f
25 sg:journal.1136561
26 schema:name Boiling crisis in droplets of ethanol water solution on the heating surface
27 schema:pagination 1-6
28 schema:productId N20a43f8b1fdb46cea0c9b76f3883c3a5
29 N20d559ebbcb04732a7c9be7323098810
30 N5d1d2aec7529444ba3dccf0c7031b49c
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028069192
32 https://doi.org/10.1134/s1810232813010013
33 schema:sdDatePublished 2019-04-11T01:02
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N4cbf88e4b7b94595916c8912e9027ebe
36 schema:url http://link.springer.com/10.1134/S1810232813010013
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N20a43f8b1fdb46cea0c9b76f3883c3a5 schema:name readcube_id
41 schema:value 85b6c75842f089da99c6d80af6b1a80f2429b74110a4e12c590c681fd351f8c4
42 rdf:type schema:PropertyValue
43 N20d559ebbcb04732a7c9be7323098810 schema:name dimensions_id
44 schema:value pub.1028069192
45 rdf:type schema:PropertyValue
46 N323003e138764e77babdfdf3cd6c4625 rdf:first sg:person.013536110251.33
47 rdf:rest Nd32cc840f8694f59891bd99965e99831
48 N4cbf88e4b7b94595916c8912e9027ebe schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N596b41aa7b0e4e97b8326e4f56bd28ba schema:issueNumber 1
51 rdf:type schema:PublicationIssue
52 N5d1d2aec7529444ba3dccf0c7031b49c schema:name doi
53 schema:value 10.1134/s1810232813010013
54 rdf:type schema:PropertyValue
55 N803b52c9d858411a872f80726c75688f schema:volumeNumber 22
56 rdf:type schema:PublicationVolume
57 Nbd895f62099f4a5b84b1324aafa99e11 rdf:first sg:person.07440273776.13
58 rdf:rest N323003e138764e77babdfdf3cd6c4625
59 Nd32cc840f8694f59891bd99965e99831 rdf:first sg:person.013401122431.45
60 rdf:rest rdf:nil
61 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
62 schema:name Engineering
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
65 schema:name Interdisciplinary Engineering
66 rdf:type schema:DefinedTerm
67 sg:journal.1136561 schema:issn 1810-2328
68 1990-5432
69 schema:name Journal of Engineering Thermophysics
70 rdf:type schema:Periodical
71 sg:person.013401122431.45 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
72 schema:familyName Elistratov
73 schema:givenName S. L.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013401122431.45
75 rdf:type schema:Person
76 sg:person.013536110251.33 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
77 schema:familyName Misyura
78 schema:givenName S. Ya.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013536110251.33
80 rdf:type schema:Person
81 sg:person.07440273776.13 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
82 schema:familyName Nakoryakov
83 schema:givenName V. E.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07440273776.13
85 rdf:type schema:Person
86 https://doi.org/10.1016/0009-2509(66)85100-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052935198
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/j.applthermaleng.2008.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010234583
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.expthermflusci.2010.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045906973
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050309541
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/s0379-7112(96)00040-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007942785
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1017/s0022112005008190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054048242
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1021/j100346a065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055666094
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1021/jp0118322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056046586
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1063/1.1321258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057694399
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1063/1.3131062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057915190
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1063/1.3488676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057960847
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1115/1.2826080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062085889
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1205/026387604323050182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037572091
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
113 schema:name Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 1, 630090, Novosibirsk, Russia
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...